GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Climate dynamics 15 (1999), S. 435-450 
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract  Observations have shown that the monsoon is a highly variable phenomenon of the tropical troposphere, which exhibits significant variance in the temporal range of two to three years. The reason for this specific interannual variability has not yet been identified unequivocally. Observational analyses have also shown that EI Niño indices or western Pacific SSTs exhibit some power in the two to three year period range and therefore it was suggested that an ocean-atmosphere interaction could excite and support such a cycle. Similar mechanisms include land-surface-atmosphere interaction as a possible driving mechanism. A rather different explanation could be provided by a forcing mechanism based on the quasi-biennial oscillation of the zonal wind in the lower equatorial stratosphere (QBO). The QBO is a phenomenon driven by equatorial waves with periods of some days which are excited in the troposphere. Provided that the monsoon circulation reacts to the modulation of tropopause conditions as forced by the QBO, this could explain monsoon variability in the quasi-biennial window. The possibility of a QBO-driven monsoon variability is investigated in this study in a number of general circulation model experiments where the QBO is assimilated to externally controlled phase states. These experiments show that the boreal summer monsoon is significantly influenced by the QBO. A QBO westerly phase implies less precipitation in the western Pacific, but more in India, in agreement with observations. The austral summer monsoon is exposed to similar but weaker mechanisms and the precipitation does not change significantly.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-07-24
    Description: The 11-year solar cycles in ozone and temperature are examined using new simulations of coupled chemistry climate models. The results show a secondary maximum in stratospheric tropical ozone, in agreement with satellite observations and in contrast with most previously published simulations. The mean model response varies by up to about 2.5% in ozone and 0.8 K in temperature during a typical solar cycle, at the lower end of the observed ranges of peak responses. Neither the upper atmospheric effects of energetic particles nor the presence of the quasi biennial oscillation is necessary to simulate the lower stratospheric response in the observed low latitude ozone concentration. Comparisons are also made between model simulations and observed total column ozone. As in previous studies, the model simulations agree well with observations. For those models which cover the full temporal range 1960–2005, the ozone solar signal below 50 hPa changes substantially from the first two solar cycles to the last two solar cycles. Further investigation suggests that this difference is due to an aliasing between the sea surface temperatures and the solar cycle during the first part of the period. The relationship between these results and the overall structure in the tropical solar ozone response is discussed. Further understanding of solar processes requires improvement in the observations of the vertically varying and column integrated ozone.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-01-19
    Description: The goal of the Chemistry-Climate Model Validation (CCMVal) activity is to improve understanding of chemistry-climate models (CCMs) through process-oriented evaluation and to provide reliable projections of stratospheric ozone and its impact on climate. An appreciation of the details of model formulations is essential for understanding how models respond to the changing external forcings of greenhouse gases and ozone-depleting substances, and hence for understanding the ozone and climate forecasts produced by the models participating in this activity. Here we introduce and review the models used for the second round (CCMVal-2) of this intercomparison, regarding the implementation of chemical, transport, radiative, and dynamical processes in these models. In particular, we review the advantages and problems associated with approaches used to model processes of relevance to stratospheric dynamics and chemistry. Furthermore, we state the definitions of the reference simulations performed, and describe the forcing data used in these simulations. We identify some developments in chemistry-climate modeling that make models more physically based or more comprehensive, including the introduction of an interactive ocean, online photolysis, troposphere-stratosphere chemistry, and non-orographic gravity-wave deposition as linked to tropospheric convection. The relatively new developments indicate that stratospheric CCM modeling is becoming more consistent with our physically based understanding of the atmosphere.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  [Poster] In: EGU General Assembly, 07.04, Vienna, Austria .
    Publication Date: 2012-02-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
  • 6
    Publication Date: 2023-01-03
    Description: ICON-A is the new icosahedral nonhydrostatic (ICON) atmospheric general circulation model in a configuration using the Max Planck Institute physics package, which originates from the ECHAM6 general circulation model, and has been adapted to account for the changed dynamical core framework. The coupling scheme between dynamics and physics employs a sequential updating by dynamics and physics, and a fixed sequence of the physical processes similar to ECHAM6. To allow a meaningful initial comparison between ICON-A and the established ECHAM6-LR model, a setup with similar, low resolution in terms of number of grid points and levels is chosen. The ICON-A model is tuned on the base of the Atmospheric Model Intercomparison Project (AMIP) experiment aiming primarily at a well balanced top-of atmosphere energy budget to make the model suitable for coupled climate and Earth system modeling. The tuning addresses first the moisture and cloud distribution to achieve the top-of-atmosphere energy balance, followed by the tuning of the parameterized dynamic drag aiming at reduced wind errors in the troposphere. The resulting version of ICON-A has overall biases, which are comparable to those of ECHAM6. Problematic specific biases remain in the vertical distribution of clouds and in the stratospheric circulation, where the winter vortices are too weak. Biases in precipitable water and tropospheric temperature are, however, reduced compared to the ECHAM6. ICON-A will serve as the basis of further development and as the atmosphere component to the coupled model, ICON-Earth system model (ESM). Key Points: - Physics package for climate modeling is coupled to a nonhydrostatic dynamical core - Tuning in five steps to obtain a balanced net radiation at top of atmosphere - Overall biases of ICON-A are comparable to ECHAM6.3, but circulation biases remain due to problems with parameterized drag
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-01-03
    Description: We evaluate the new icosahedral nonhydrostatic atmospheric (ICON-A) general circulation model of the Max Planck Institute for Meteorology that is flexible to be run at grid spacings from a few tens of meters to hundreds of kilometers. A simulation with ICON-A at a low resolution (160 km) is compared to a not-tuned fourfold higher-resolution simulation (40 km). Simulations using the last release of the ECHAM climate model (ECHAM6.3) are also presented at two different resolutions. The ICON-A simulations provide a compelling representation of the climate and its variability. The climate of the low-resolution ICON-A is even slightly better than that of ECHAM6.3. Improvements are obtained in aspects that are sensitive to the representation of orography, including the representation of cloud fields over eastern-boundary currents, the latitudinal distribution of cloud top heights, and the spatial distribution of convection over the Indian Ocean and the Maritime Continent. Precipitation over land is enhanced, in particular at high-resolution ICON-A. The response of precipitation to El Niño sea surface temperature variability is close to observations, particularly over the eastern Indian Ocean. Some parameterization changes lead to improvements, for example, with respect to rain intensities and the representation of equatorial waves, but also imply a warmer troposphere, which we suggest leads to an unrealistic poleward mass shift. Many biases familiar to ECHAM6.3 are also evident in ICON-A, namely, a too zonal SPCZ, an inadequate representation of north hemispheric blocking, and a relatively poor representation of tropical intraseasonal variability. Key Points: - Article presents evaluation of atmosphere component of new ICON Earth system model - The new MPI atmospheric ICON-A model partly outperforms ECHAM6.3 - ICON-A is flexible to be run at grid spacings from a few tens of meters to hundreds of kilometers
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: In order to improve the representation of the shortwave radiative transfer in the MAECHAM5 general circulation model, the spectral resolution of the shortwave radiation parameterization used in the model has been increased and extended in the UV-B and UV-C bands. The upgraded shortwave parameterization is first validated offline with a 4 stream discrete-ordinate line-by-line model. Thereafter, two 20-years simulations with the MAECHAM5 middle atmosphere general circulation model are performed to evaluate the temperature changes and the dynamical feedbacks arising from the newly introduced parameterization. The offline clear-sky comparison of the standard and upgraded parameterizations with the discrete ordinate model shows considerable improvement for the upgraded parameterization in terms of shortwave fluxes and heating rates. In the simulation with the upgraded ratiation parameterization, we report a significant warming of almost the entire atmosphere, largest at 1 hPa at the stratopause, and stronger zonal mean zonal winds in the middle atmosphere. The warming at the summer stratopause alleviates the cold bias present in the model when the standard radiation scheme is used. The stronger zonal mean zonal winds induce a dynamical feedback that results in a dynamical warming (cooling) of the polar winter (summer) mesosphere, caused by an increased downward (upward)circulation in the winter (summer) hemisphere. In the troposphere, the changes in the spectral resolution and the associated changes in the cloud optical parameters introduce a relatively small warming and, consistenly, a moisteneing. The warming occurs mostly in the upper troposphere and can contribute to a possible improvement of the model temperature climatology.
    Description: Published
    Description: 11067–11092
    Description: open
    Keywords: radiation ; Circulation ; Model ; 01. Atmosphere::01.01. Atmosphere::01.01.05. Radiation
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-08-05
    Description: This work documents the ICON‐Earth System Model (ICON‐ESM V1.0), the first coupled model based on the ICON (ICOsahedral Non‐hydrostatic) framework with its unstructured, icosahedral grid concept. The ICON‐A atmosphere uses a nonhydrostatic dynamical core and the ocean model ICON‐O builds on the same ICON infrastructure, but applies the Boussinesq and hydrostatic approximation and includes a sea‐ice model. The ICON‐Land module provides a new framework for the modeling of land processes and the terrestrial carbon cycle. The oceanic carbon cycle and biogeochemistry are represented by the Hamburg Ocean Carbon Cycle module. We describe the tuning and spin‐up of a base‐line version at a resolution typical for models participating in the Coupled Model Intercomparison Project (CMIP). The performance of ICON‐ESM is assessed by means of a set of standard CMIP6 simulations. Achievements are well‐balanced top‐of‐atmosphere radiation, stable key climate quantities in the control simulation, and a good representation of the historical surface temperature evolution. The model has overall biases, which are comparable to those of other CMIP models, but ICON‐ESM performs less well than its predecessor, the Max Planck Institute Earth System Model. Problematic biases are diagnosed in ICON‐ESM in the vertical cloud distribution and the mean zonal wind field. In the ocean, sub‐surface temperature and salinity biases are of concern as is a too strong seasonal cycle of the sea‐ice cover in both hemispheres. ICON‐ESM V1.0 serves as a basis for further developments that will take advantage of ICON‐specific properties such as spatially varying resolution, and configurations at very high resolution.
    Description: Plain Language Summary: ICON‐ESM is a completely new coupled climate and earth system model that applies novel design principles and numerical techniques. The atmosphere model applies a non‐hydrostatic dynamical core, both atmosphere and ocean models apply unstructured meshes, and the model is adapted for high‐performance computing systems. This article describes how the component models for atmosphere, land, and ocean are coupled together and how we achieve a stable climate by setting certain tuning parameters and performing sensitivity experiments. We evaluate the performance of our new model by running a set of experiments under pre‐industrial and historical climate conditions as well as a set of idealized greenhouse‐gas‐increase experiments. These experiments were designed by the Coupled Model Intercomparison Project (CMIP) and allow us to compare the results to those from other CMIP models and the predecessor of our model, the Max Planck Institute for Meteorology Earth System Model. While we diagnose overall satisfactory performance, we find that ICON‐ESM features somewhat larger biases in several quantities compared to its predecessor at comparable grid resolution. We emphasize that the present configuration serves as a basis from where future development steps will open up new perspectives in earth system modeling.
    Description: Key Points: This work documents ICON‐ESM 1.0, the first version of a coupled model based on the ICON framework. Performance of ICON‐ESM is assessed by means of CMIP6 Diagnosis, Evaluation, and Characterization of Klima experiments at standard CMIP‐type resolution. ICON‐ESM reproduces the observed temperature evolution. Biases in clouds, winds, sea‐ice, and ocean properties are larger than in MPI‐ESM.
    Description: European Union H2020 ESM2025
    Description: European Union H2020 COMFORT
    Description: European Union H2020ESiWACE2
    Description: Deutsche Forschungsgemeinschaft TRR181
    Description: Deutsche Forschungsgemeinschaft EXC 2037
    Description: European Union H2020
    Description: Deutscher Wetterdienst
    Description: Bundesministerium fuer Bildung und Forschung
    Description: http://esgf-data.dkrz.de/search/cmip6-dkrz/
    Description: https://mpimet.mpg.de/en/science/modeling-with-icon/code-availability
    Description: http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=RUBY-0_ICON-_ESM_V1.0_Model
    Keywords: ddc:550.285 ; ddc:551.63
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...