GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-05-02
    Description: Stratospheric ozone depletion and emission of greenhouse gases lead to a trend of the southern annular mode (SAM) toward its high-index polarity. The positive phase of the SAM is characterized by stronger than usual westerly winds that induce changes in the physical carbon transport. Changes in the natural carbon budget of the upper 100 m of the Southern Ocean in response to a positive SAM phase are explored with a coupled ecosystem-general circulation model and regression analysis. Previously overlooked processes that are important for the upper ocean carbon budget during a positive SAM period are identified, namely, export production and downward transport of carbon north of the polar front (PF) as large as the upwelling in the south. The limiting micronutrient iron is brought into the surface layer by upwelling and stimulates phytoplankton growth and export production but only in summer. This leads to a drawdown of carbon and less summertime outgassing (or more uptake) of natural CO2. In winter, biological mechanisms are inactive, and the surface ocean equilibrates with the atmosphere by releasing CO2. In the annual mean, the upper ocean region south of the PF loses more carbon by additional export production than by the release of CO2 into the atmosphere, highlighting the role of the biological carbon pump in response to a positive SAM event.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Global Biogeochemical Cycles, 27 (1). pp. 11-20.
    Publication Date: 2016-05-02
    Description: We combined data sets of measured sedimentary calcium carbonate (CaCO3) and satellite-derived pelagic primary production to parameterize the relation between CaCO3 content on the Antarctic shelves and primary production in the overlying water column. CaCO3 content predicted in this way was in good agreement with the measured data. The parameterization was then used to chart CaCO3 content on the Antarctic shelves all around the Antarctic, using the satellite-derived primary production. The total inventory of CaCO3 in the bioturbated layer of Antarctic shelf sediments was estimated to be 0.5 Pg C. This quantity is comparable to the total CO2 uptake by the Southern Ocean in only one to a few years (dependent on the uptake estimate and area considered), indicating that the dissolution of these carbonates will neither delay ocean acidification in this area nor augment the Southern Ocean CO2 uptake capacity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-02-08
    Description: The major part of dissolved iron (DFe) in seawater is bound to organic matter, which prevents iron from adsorptive removal by sinking particles and essentially regulates the residence time of DFe and its availability for marine biota. Characteristics of iron‐binding ligands highly depend on their biological origin and physico‐chemical properties of seawater which may intensely alter under ongoing climate change. To understand environmental controls on the iron binding, we applied a function of pH and dissolved organic carbon (DOC) to describe changes in the binding strength of organic ligands in a global biogeochemical model (REcoM). This function was derived based on calculations using a thermodynamic chemical speciation model NICA. This parameterization considerably improved the modeled DFe distribution, particularly in the surface Pacific and the global mesopelagic and deep waters, compared to our previous model simulations with a constant ligand or one prognostic ligand. This indicates that the organic binding of iron is apparently controlled by seawater pH in addition to its link to organic matter. We tested further the response of this control to environmental changes in a simulation with future pH of a high emission scenario. The response of the binding potential shows a complex pattern in different regions and is regulated by factors that have opposite effects on the binding potential. The relative contributions of these factors can change over time by a continual change of environmental conditions. A dynamic feedback system therefore needs to be considered to predict the marine iron cycle under ongoing climate change.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Global Biogeochemical Cycles, 16 (4). pp. 85-1.
    Publication Date: 2018-03-15
    Description: The influence of the overturning circulation on the anthropogenic carbon sink in the North Atlantic is investigated with a simple box model. The net air-sea flux of anthropogenic carbon in the North Atlantic is the result of two opposing fluxes: The first is the uptake caused by the disequilibrium between the rapidly rising atmospheric pCO2 and the dissolved carbon content in the ocean, depending mainly on the water exchange rate between mixed layer and interior North Atlantic ocean. Superimposed is a second flux, related to the northward transport of heat within the Atlantic basin, that is directed out of the ocean, contrary to conventional wisdom. It is caused by a latitudinal gradient in the ratio of seawater alkalinity to total dissolved inorganic carbon that in turn is related to the cooling and freshening of surface water on its way north. This flux depends strongly on the vertical structure of the upper branch of the overturning circulation and on the distribution of undersaturation and supersaturation of CO2 in Atlantic surface waters. A data-based estimate of anthropogenic carbon inventory in the North Atlantic is consistent with a dominance of the disequilibrium flux over the heat-flux-related outgassing at the present time, but, in our model, does not place a strong constraint on the net anthropogenic air-sea flux. Stabilization of the atmospheric pCO2 on a higher level will change the relative role of the two opposing fluxes, making the North Atlantic a source of anthropogenic carbon to the atmosphere. We discuss implications for the interpretation of numerical carbon cycle models.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-07
    Description: Among mechanisms accounting for atmospheric pCO2 drawdown during glacial periods, processes operating in the North Atlantic (NA) and Southern Ocean (SO) have been proposed to be critical. Their individual and synergic effects during a course of glaciation, however, remain enigmatic. We conducted simulations to examine these effects at idealized glacial stages. Under early-glacial-like conditions, cooling in the SO can trigger an initial pCO2 drawdown while the associated sea ice expansion has little impact on air-sea gas exchange. Under later glacial-like conditions, further cooling in the NA enhances ocean carbon uptake due to a stronger solubility pump, and the SO-induced stronger deep stratification prevents carbon exchange between the deep and upper ocean. Meanwhile, strengthened dust deposition increases the SO contribution to the global biological pump, and CO2 outgassing is suppressed by fully extended sea ice cover. More carbon is then stored in the deep Pacific, acting as a passive reservoir.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Copernicus, Göttingen
    In:  EPIC3EGU General Assembly 2012, Vienna, 2012-04-22-2012-04-27Geophysical Research Abstracts, Vol. 14, EGU2012-4966, Copernicus, Göttingen
    Publication Date: 2019-07-17
    Description: A significant influence of changes in the westerly winds over the Southern Ocean was proposed as a mechanism to explain a large portion of the glacial atmospheric pCO2 drawdown (Toggweiler et al., 2006). However, additional modelling studies with Earth System Models of Intermediate Complexity do not confirm the size and sometimes even the sign of the impact of southern hemispheric winds on the glacial pCO2 as suggested by Toggweiler (Men- viel et al., 2008; Tschumi et al., 2008, d’Orgeville et al., 2010). We here add to this discussion and explore the potential contribution of changes in the latitudinal position of the winds on Southern Ocean physics and the carbon cycle by using a state-of-the-art ocean general circulation model (MITgcm) in a spatial resolution increasing in the Southern Ocean (2◦ longitude; northern hemisphere: 2◦ latitude; southern hemisphere: 2◦cos(α)). We discuss how the change in carbon cycling is related to the upwelling strength and pattern in the Southern Ocean and how they depend on the changing wind fields and/or the sea ice coverage. While the previous studies explored the impact of the westlies starting from present day or pre-industrial back- ground conditions, we here perform simulations from LGM background climate. Ocean surface conditions are for reasons of consistency taken from output of the COSMOS Earth System model for a pre-industrial control and two LGM runs (Zhang et al., in preparation). Additionally, a northwards shift (by 10◦) of the westerly wind belt as proposed by Toggweiler is investigated.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Copernicus, Göttingen
    In:  EPIC3EGU General Assembly 2012, Vienna, 2012-04-22-2012-04-27Geophysical Research Abstracts, Vol. 14, EGU2012-5135, Copernicus, Göttingen
    Publication Date: 2019-07-17
    Description: We investigate the potential of a specific geoengineering technique: the carbon sequestration by artificially en- hanced silicate weathering via the dissolution of olivine. This approach would not only operate against rising temperatures but would also oppose ocean acidification. If details of the marine chemistry are taken into consid- eration, a new mass ratio of CO2 sequestration per olivine dissolution of about 1 is achieved, 20% smaller than previously assumed. We calculate that this approach has the potential to sequestrate up to 1 Pg of C per year di- rectly, if olivine is distributed as fine powder over land areas of the humid tropics, but this rate is limited by the saturation concentration of silicic acid. These upper limit sequestration rates come at the environmental cost of pH values in the rivers rising to 8.2 in examples for the rivers Amazon and Congo (Köhler et al., 2010). The secondary effects of the input of silicic acid connected with this approach leads in an ecosystem model (Re- COM2.0 in MITgcm) to species shifts aways from the calcifying species towards diatoms, thus altering the biolog- ical carbon pumps. Open ocean dissolution of olivine would sequestrate about 1 Pg CO2 per Pg olivine from which about 8% are caused by changes in the biological pumps (increase export of organic matter, decreased export of CaCO3). The chemical impact of open ocean dissolution of olivine (the increased alkalinity input) is therefore less efficient than dissolution on land, but leads due to different chemical impacts to a higher surface ocean pH enhancement to counteract ocean acidification. We finally investigate open ocean dissolution rates of up to 10 Pg olivine per year corresponding to geoengineering rates which might be of interest in the light of expected future emission (e.g. A2 scenario with emissions rising to 30 PgC/yr in 2100 AD). Those rates would still sequestrate only less than 20% of the emission until 2100, but would require that the nowadays available shipping capacity of tankers and bulk carriers is entirely used for olivine dissolution ten times a year.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...