GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 2008. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 124 (2008): 4059-4068, doi:10.1121/1.2945154.
    Description: Underwater sound signals for biosonar and communication normally have different source properties to serve the purposes of generating efficient acoustic backscatter from small objects or conveying information to conspecifics. Harbor porpoises (Phocoena phocoena) are nonwhistling toothed whales that produce directional, narrowband, high-frequency (HF) echolocation clicks. This study tests the hypothesis that their 130 kHz HF clicks also contain a low-frequency (LF) component more suited for communication. Clicks from three captive porpoises were analyzed to quantify the LF and HF source properties. The LF component is 59 (S.E.M=1.45 dB) dB lower than the HF component recorded on axis, and even at extreme off-axis angles of up to 135°, the HF component is 9 dB higher than the LF component. Consequently, the active space of the HF component will always be larger than that of the LF component. It is concluded that the LF component is a by-product of the sound generator rather than a dedicated pulse produced to serve communication purposes. It is demonstrated that distortion and clipping in analog tape recorders can explain some of the prominent LF components reported in earlier studies, emphasizing the risk of erroneous classification of sound types based on recording artifacts.
    Description: This work was supported by the Carlsberg Foundation and Oticon, and via a Steno Scholarship from the Danish Natural Science Research Council to PTM.
    Keywords: Bioacoustics ; Mechanoception ; Underwater sound ; Zoology
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 2012. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 131 (2012): 582-592, doi:10.1121/1.3662067.
    Description: Bottlenose dolphins (Tursiops sp.) depend on frequency-modulated whistles for many aspects of their social behavior, including group cohesion and recognition of familiar individuals. Vocalization amplitude and frequency influences communication range and may be shaped by many ecological and physiological factors including energetic costs. Here, a calibrated GPS-synchronized hydrophone array was used to record the whistles of bottlenose dolphins in a tropical shallow-water environment with high ambient noise levels. Acoustic localization techniques were used to estimate the source levels and energy content of individual whistles. Bottlenose dolphins produced whistles with mean source levels of 146.7±6.2 dB re. 1 μPa(RMS). These were lower than source levels estimated for a population inhabiting the quieter Moray Firth, indicating that dolphins do not necessarily compensate for the high noise levels found in noisy tropical habitats by increasing their source level. Combined with measured transmission loss and noise levels, these source levels provided estimated median communication ranges of 750 m and maximum communication ranges up to 5740 m. Whistles contained less than 17 mJ of acoustic energy, showing that the energetic cost of whistling is small compared to the high metabolic rate of these aquatic mammals, and unlikely to limit the vocal activity of toothed whales.
    Description: This study received support from the Danish Ph.D. School of Aquatic Sciences (SOAS), Aarhus University, DK, WWF Verdensnaturfonden and Aase & Ejnar Danielsens Foundation, the Siemens Foundation, the Faculty of Science at the University of Aarhus, DK, and the Danish Natural Science Foundation via a Steno scholarship and a logistics grant to PTM.
    Keywords: Acoustic arrays ; Acoustic noise ; Acoustic radiators ; Acoustic variables measurement ; Acoustic wave transmission ; Biocommunications ; Global Positioning System ; Hydrophones ; Underwater sound
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: Author Posting. © Acoustical Society of America, 2020. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 147(6), (2020): 4069, doi:10.1121/10.0001400.
    Description: Marine mammals have fine-tuned hearing abilities, which makes them vulnerable to human-induced sounds from shipping, sonars, pile drivers, and air guns. Many species of marine birds, such as penguins, auks, and cormorants, find their food underwater where light is often limited, suggesting sound detection may play a vital role. Yet, for most marine birds, it is unknown whether they are using, and can thereby be affected by, underwater sound. The authors conducted a series of playback experiments to test whether Alcid seabirds responded to and were disrupted by, underwater sound. Underwater broadband sound bursts and mid-frequency naval 53 C sonar signals were presented to two common murres (Uria aalge) in a quiet pool. The received sound pressure levels varied from 110 to 137 dB re 1 μPa. Both murres showed consistent reactions to sounds of all intensities, as compared to no reactions during control trials. For one of the birds, there was a clearly graded response, so that more responses were found at higher received levels. The authors' findings indicate that common murres may be affected by, and therefore potentially also vulnerable to, underwater noise. The effect of man-made noise on murres, and possibly other marine birds, requires more thorough consideration.
    Description: This project was funded by the U. S. Navy's Living Marine Resources Program (BAA N39433015R7203) and Woods Hole Oceanographic Institution. Birds were loaned from Copenhagen Zoo. Work was conducted under permission from the WHOI Institutional Animal Care and Use Committee, and animal permit to University of Southern Denmark No. 2300-50120-00003-09 from the Danish Ministry of Food and Agriculture. Statistical analysis was assisted by Simeon Smeele (MPI Konstanz, Germany) and Owen Jones (University of Southern Denmark).
    Description: 2020-12-22
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: Author Posting. © Acoustical Society of America, 2016. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 139 (2016): 2860, doi:10.1121/1.4949478.
    Description: Sperm whales produce codas for communication that can be grouped into different types according to their temporal patterns. Codas have led researchers to propose that sperm whales belong to distinct cultural clans, but it is presently unclear if they also convey individual information. Coda clicks comprise a series of pulses and the delay between pulses is a function of organ size, and therefore body size, and so is one potential source of individual information. Another potential individual-specific parameter could be the inter-click intervals within codas. To test whether these parameters provide reliable individual cues, stereo-hydrophone acoustic tags (Dtags) were attached to five sperm whales of the Azores, recording a total of 802 codas. A discriminant function analysis was used to distinguish 288 5 Regular codas from four of the sperm whales and 183 3 Regular codas from two sperm whales. The results suggest that codas have consistent individual features in their inter-click intervals and inter-pulse intervals which may contribute to individual identification. Additionally, two whales produced different coda types in distinct foraging dive phases. Codas may therefore be used by sperm whales to convey information of identity as well as activity within a social group to a larger extent than previously assumed.
    Description: The research was funded by the Danish Research Council; the Carlsberg Foundation; Fundação para a Ciência e a Tecnologia (FCT); Fundo Regional da Ciência, Tecnologia (FRCT) through research projects TRACE-PTDC/MAR/74071/2006 and MAPCET-M2.1.2/F/012/2011 [Fundo Europeu de Desenvolvimento Regional, the Competitiveness Factors Operational (COMPETE), Quadro de Referência Estratégico Nacional (QREN) European Social Fund, and Proconvergencia Açores/European Union Program]; Aarhus University; Woods Hole Oceanographic Institution; University of Southern Denmark and University of La Laguna. We acknowledge funds provided by FCT to MARE – Marine and Environmental Sciences Centre (UID/MAR/04292/2013) and Instituto do Mar at University of the Azores and by the FRCT – Government of the Azores pluriannual funding. C.O. was funded by FCT (SFRH/BD/37668/2007). M.A.S. was supported by an FCT postdoctoral grant (SFRH/BPD/29841/2006) and is currently supported by POPH, QREN European Social Fund and the Portuguese Ministry for Science and Education, through an FCT Investigator grant. M.J. is supported by the Marine Alliance for Science and Technology Scotland (MASTS) and a Marie Curie Career Integration Grant. D.M.W. was funded by a Ph.D. stipend from the Oticon Foundation, Denmark.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...