GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2010-2014  (3)
Document type
Years
Year
  • 1
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-03-06
    Description: Highlights • Naturally enriched AOM biomass was studied in high-pressure continuous incubation. • We report the first S- and O-isotope fractionation values by sulfate reduction coupled to AOM from culture studies. • There is a tight link between methane concentration and S- and O-isotope fractionation. • S- and O-isotope fractionation values indicate reversibility of energy limited microbial processes. • The wide range of environmental S- and O-isotope signatures can be explained. Abstract Isotope signatures of sulfur compounds are key tools for studying sulfur cycling in the modern environment and throughout earth's history. However, for meaningful interpretations, the isotope effects of the processes involved must be known. Sulfate reduction coupled to the anaerobic oxidation of methane (AOM-SR) plays a pivotal role in sedimentary sulfur cycling and is the main process responsible for the consumption of methane in marine sediments − thereby efficiently limiting the escape of this potent greenhouse gas from the seabed to the overlying water column and atmosphere. In contrast to classical dissimilatory sulfate reduction (DSR), where sulfur and oxygen isotope effects have been measured in culture studies and a wide range of isotope effects has been observed, the sulfur and oxygen isotope effects by AOM-SR are unknown. This gap in knowledge severely hampers the interpretation of sulfur cycling in methane-bearing sediments, especially because, unlike DSR which is carried out by a single organism, AOM-SR is presumably catalyzed by consortia of archaea and bacteria that both contribute to the reduction of sulfate to sulfide. We studied sulfur and oxygen isotope effects by AOM-SR at various aqueous methane concentrations from 1.4±0.6 mM1.4±0.6 mM up to 58.8±10.5 mM58.8±10.5 mM in continuous incubation at steady state. Changes in the concentration of methane induced strong changes in sulfur isotope enrichment (View the MathML sourceεS34) and oxygen isotope exchange between water and sulfate relative to sulfate reduction (θOθO), as well as sulfate reduction rates (SRR). Smallest View the MathML sourceεS34 (21.9±1.9‰21.9±1.9‰) and θOθO (0.5±0.20.5±0.2) as well as highest SRR were observed for the highest methane concentration, whereas highest View the MathML sourceεS34 (67.3±26.1‰67.3±26.1‰) and θOθO (2.5±1.52.5±1.5) and lowest SRR were reached at low methane concentration. Our results show that View the MathML sourceεS34, θOθO and SRR during AOM-SR are very sensitive to methane concentration and thus also correlate with energy yield. In sulfate–methane transition zones, AOM-SR is likely to induce very large sulfur isotope fractionation between sulfate and sulfide (i.e. 〉60‰〉60‰) and will drive the oxygen isotope composition of sulfate towards the sulfate–water oxygen isotope equilibrium value. Sulfur isotope fractionation by AOM-SR at gas seeps, where methane fluxes are high, will be much smaller (i.e. 20 to 40‰).
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-09-23
    Description: Assessing frequency and extent of mass movement at continental margins is crucial to evaluate risks for offshore constructions and coastal areas. A multidisciplinary approach including geophysical, sedimentological, geotechnical, and geochemical methods was applied to investigate multistage mass transport deposits (MTDs) off Uruguay, on top of which no surficial hemipelagic drape was detected based on echosounder data. Nonsteady state pore water conditions are evidenced by a distinct gradient change in the sulfate (SO42−) profile at 2.8 m depth. A sharp sedimentological contact at 2.43 m coincides with an abrupt downward increase in shear strength from ∼10 to 〉20 kPa. This boundary is interpreted as a paleosurface (and top of an older MTD) that has recently been covered by a sediment package during a younger landslide event. This youngest MTD supposedly originated from an upslope position and carried its initial pore water signature downward. The kink in the SO42− profile ∼35 cm below the sedimentological and geotechnical contact indicates that bioirrigation affected the paleosurface before deposition of the youngest MTD. Based on modeling of the diffusive re-equilibration of SO42− the age of the most recent MTD is estimated to be 〈30 years. The mass movement was possibly related to an earthquake in 1988 (∼70 km southwest of the core location). Probabilistic slope stability back analysis of general landslide structures in the study area reveals that slope failure initiation requires additional ground accelerations. Therefore, we consider the earthquake as a reasonable trigger if additional weakening processes (e.g., erosion by previous retrogressive failure events or excess pore pressures) preconditioned the slope for failure. Our study reveals the necessity of multidisciplinary approaches to accurately recognize and date recent slope failures in complex settings such as the investigated area.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...