GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • China Geological Survey  (5)
  • ECO2 Project Office  (4)
  • Forschungszentrum Jülich, Projektträger Biologie, Energie, Ökologie, Bereich Meeres- und Polarforschung  (1)
  • Pergamon Press  (1)
  • 2010-2014  (10)
  • 2000-2004  (1)
Document type
Publisher
Years
Year
  • 1
    facet.materialart.
    Unknown
    Forschungszentrum Jülich, Projektträger Biologie, Energie, Ökologie, Bereich Meeres- und Polarforschung
    In:  [Talk] In: Statusseminar Meeresforschung mit FS Sonne 2011, 09.-10.02.2011, Hannover . Tagungsband / Meeresforschung mit FS Sonne : Statusseminar 2011 ; pp. 103-106 .
    Publication Date: 2012-07-06
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    ECO2 Project Office
    In:  ECO2 Deliverable, D12.2 . ECO2 Project Office, 6 pp.
    Publication Date: 2019-03-11
    Description: In order to proceed with speculative modelling of the impacts of potential leakage of geologically stored carbon, it is necessary to develop plausible scenarios. Here a range of such scenarios are developed based on a consensus of the possible geological mechanisms of leakage, namely abandoned wells, geological faults and operational blowouts. Whilst the resulting scenarios remain highly speculative, they do enable short term progress in modelling and provide a basis for further debate and refinement.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    ECO2 Project Office
    In:  ECO2 Deliverable, D12.1 . ECO2 Project Office, 14 pp.
    Publication Date: 2019-03-11
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-03-11
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    China Geological Survey
    In:  [Paper] In: 8. International Conference on Gas Hydrates (ICGH8), 28.07.-01.08.2014, Beijing, China . Proceedings of the 8th International Conference on Gas Hydrates (ICGH8-2014), Beijing, China, 28 July - 1 August, 2014 ; T3-56 .
    Publication Date: 2016-12-21
    Description: Injection of CO2 into CH4-hydrate bearing sediments, and the resulting in-situ replacement of CH4-hydrate by CO2-hydrate, has been proposed as a technique for the emission-free production of natural gas from gas hydrates. While the hydrate conversion is thermodynamically feasible, many studies conclude that the overall process suffers from mass transfer limitations and CH4 production is limited after short time. To improve CH4 production various technical concepts have been considered, including the injection of heated supercritical CO2 combining chemical activation and thermalstimulation. While the feasibility of the concept was demonstrated in high-pressure flow-through experiments and high CH4 production efficiencies were observed, it was evident that overall yields and efficiencies were influenced by a variety of processes which could not be disclosed through bulk mass and volume analysis. Here we present different numerical simulation strategies which were developed and tested as tools to better understand the importance of mass and heat transport relative to reaction and phase transition kinetics for CH4 release and production, or for CO2 retention, respectively. The modeling approaches are discussed with respect to applicability for experimental design, process development or prediction of CH4 production from natural gas hydrate reservoirs on larger scales.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    China Geological Survey
    In:  [Paper] In: 8. International Conference on Gas Hydrates (ICGH8), 28.07.-01.08.2014, Beijing, China . Proceedings of the 8th International Conference on Gas Hydrates (ICGH8) Beijing, China, 28 July - 1 August, 2014 ; T1-68 .
    Publication Date: 2014-11-21
    Description: Water permeability in gas hydrate bearing sediments is a crucial parameter for the prediction of gas production scenarios. So far, the commonly used permeability models are backed by very few experimental data. Furthermore, detailed knowledge of the exact formation mechanism leads to severe uncertainties in the interpretation of the experimental data. We formed CH4 hydrates from a methane saturated water solution and used Magnetic Resonance Imaging (MRI) to measure time resolved maps of the three-dimensional gas hydrate saturation. These maps were used for 3D Finite Elements Method (FEM) simulations. The simulation results enabled us to optimize existing models for permeabilities as function of gas hydrate saturation.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Pergamon Press
    In:  Deep Sea Research Part II: Topical Studies in Oceanography, 48 . pp. 3737-3756.
    Publication Date: 2020-08-05
    Description: A geochemical model of the Peru Basin deep-sea floor, based on an extensive set of field data as well as on numerical simulations, is presented. The model takes into account the vertical oscillations of the redox zonation that occur in response to both long-term (glacial/interglacial) and short-term (El Niño Southern Oscillation (ENSO) time scale) variations in the depositional flux of organic matter. Field evidence of reaction between the pore water NO3− and an oxidizable fraction of the structural Fe(II) in the clay mineral content of the deep-sea sediments is provided. The conditions of formation and destruction of reactive clay Fe(II) layers in the sea floor are defined, whereby a new paleo-redox proxy is established. Transitional NO3− profile shapes are explained by periodic contractions and expansions of the oxic zone (ocean bottom respiration) on the ENSO time scale. The near-surface oscillations of the oxic–suboxic boundary constitute a redox pump mechanism of major importance with respect to diagenetic trace metal enrichments and manganese nodule formation, which may account for the particularly high nodule growth rates in this ocean basin. These conditions are due to the similar depth ranges of both the O2 penetration in the sea floor and the bioturbated high reactivity surface layer (HRSL), all against the background of ENSO-related large variations in depositional Corg flux. Removal of the HRSL in the course of deep-sea mining would result in a massive expansion of the oxic surface layer and, thus, the shut down of the near-surface redox pump for centuries, which is demonstrated by numerical modeling.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-03-11
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    China Geological Survey
    In:  [Paper] In: 8. International Conference on Gas Hydrates (ICGH8), 28.07.-01.08.2014, Beijing, China . Proceedings of the 8th International Conference on Gas Hydrates (ICGH8-2014), Beijing, China, 28 July - 1 August, 2014 ; T2-37 .
    Publication Date: 2014-11-21
    Description: The Alaska North Slope comprises an area of about 400,000 km2 including prominent gas and oil fields. Gas hydrates occur widely at the Alaska North Slope. A recent assessment by the USGS estimates 0.7-4.47 x 1012 m3 of technically recoverable gas hydrates based on well data and drilled hydrate accumulations. In spring 2012 a production field trial, testing CO2/N2 injection and depressurization, was conducted by USDOE/JOGMEC/ConocoPhillips at the Ignik Sikumi site. The 3D geological model of the Alaska North Slope developed by the USGS and Schlumberger is used to test the new gas hydrate module in the petroleum systems modeling software PetroMod®. Model results of the present extent of the gas hydrate stability zone (GHSZ) are in good agreement with results from well data. The model simulations reveal that the evolution of the GHSZ over time is primarily controlled by the climatic conditions regulating the extent of the permafrost during the last 1 Myr. Preliminary model runs predict the highest gas hydrate saturations near the major faults and at the bottom of the GHSZ, where thermogenic methane gas accumulates after migration through the most permeable stratigraphic layers (e.g. Sag River Sandstone Fm, Ivishak Fm). Gas hydrate saturations predicted for the Mount Elbert Stratigraphic Test Well and the Ignik Sikumi sites are basically controlled by the alternation of layers with different permeability and the fault properties (time of opening, permeability, etc). Further results including a total gas hydrate assessment for the Alaska North Slope will be presented during the conference.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    China Geological Survey
    In:  [Paper] In: 8. International Conference on Gas Hydrates (ICGH8), 28.07.-01.08.2014, Beijing, China . Proceedings of the 8th International Conference on Gas Hydrates (ICGH8-2014), Beijing, China, 28 July - 1 August, 2014 ; T3-63 .
    Publication Date: 2019-09-23
    Description: Due to their favorable P-T conditions and organic-rich deposits, sub-seafloor sediments in the northern Gulf of Mexico are known to have a large potential for gas hydrate accumulations. The presence of gas hydrates within sediments of the Green Canyon block has been proven by various methods, incl. seismic imaging, geochemical analysis, and drilling conducted mainly as a part of Joint Industry Project (JIP) Phase II. Gas hydrates reported therein usually occur as tens up to hundreds of meters thick sections with moderate to high concentrations within a range of 50 – 70 vol. % of pore space, and hence, seem to offer a considerable natural deposit of methane gas. The main focus of this study was to explore the complex effects of a set of control- parameters responsible for hydrocarbon migration and storage within the Gas Hydrate Stability Zone (GHSZ) on the accumulation of gas hydrates. To investigate the processes of basin formation and its subsidence history, source rock maturation, hydrocarbon migration and expulsion, and to quantify the gas hydrate accumulation potential, 3-D numerical study has been conducted using PetroMod. The area of interest extends over ~14 km x 33 km and covers the edge of the Sigsbee Escarpment representing the main salt mobility front in the region. The simulation contains full depositional history of the Green Canyon block, incl. salt deposition and re-mobilization as well as its further implications for temperature field, fluids migration and sedimentary layers distribution. Methane generation has been resolved by in-situ POC degradation and deep thermogenic mobilization from two distinct hydrocarbon sources. As a result, we present a number of likely scenarios of gas hydrate formation and accumulation in the study area that have been calibrated against available data.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...