GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    facet.materialart.
    Unknown
    China Geological Survey
    In:  [Paper] In: 8. International Conference on Gas Hydrates (ICGH8), 28.07.-01.08.2014, Beijing, China . Proceedings of the 8th International Conference on Gas Hydrates (ICGH8-2014), Beijing, China, 28 July - 1 August, 2014 ; T2-37 .
    Publication Date: 2014-11-21
    Description: The Alaska North Slope comprises an area of about 400,000 km2 including prominent gas and oil fields. Gas hydrates occur widely at the Alaska North Slope. A recent assessment by the USGS estimates 0.7-4.47 x 1012 m3 of technically recoverable gas hydrates based on well data and drilled hydrate accumulations. In spring 2012 a production field trial, testing CO2/N2 injection and depressurization, was conducted by USDOE/JOGMEC/ConocoPhillips at the Ignik Sikumi site. The 3D geological model of the Alaska North Slope developed by the USGS and Schlumberger is used to test the new gas hydrate module in the petroleum systems modeling software PetroMod®. Model results of the present extent of the gas hydrate stability zone (GHSZ) are in good agreement with results from well data. The model simulations reveal that the evolution of the GHSZ over time is primarily controlled by the climatic conditions regulating the extent of the permafrost during the last 1 Myr. Preliminary model runs predict the highest gas hydrate saturations near the major faults and at the bottom of the GHSZ, where thermogenic methane gas accumulates after migration through the most permeable stratigraphic layers (e.g. Sag River Sandstone Fm, Ivishak Fm). Gas hydrate saturations predicted for the Mount Elbert Stratigraphic Test Well and the Ignik Sikumi sites are basically controlled by the alternation of layers with different permeability and the fault properties (time of opening, permeability, etc). Further results including a total gas hydrate assessment for the Alaska North Slope will be presented during the conference.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-06-02
    Description: Convection in a volatile nitrogen-ice-rich layer drives Pluto’s geological vigour Nature 534, 7605 (2016). doi:10.1038/nature18289 Authors: William B. McKinnon, Francis Nimmo, Teresa Wong, Paul M. Schenk, Oliver L. White, J. H. Roberts, J. M. Moore, J. R. Spencer, A. D. Howard, O. M. Umurhan, S. A. Stern, H. A. Weaver, C. B. Olkin, L. A. Young & K. E. Smith The vast, deep, volatile-ice-filled basin informally named Sputnik Planum is central to Pluto’s vigorous geological activity. Composed of molecular nitrogen, methane, and carbon monoxide ices, but dominated by nitrogen ice, this layer is organized into cells or polygons, typically about 10 to 40 kilometres across, that resemble the surface manifestation of solid-state convection. Here we report, on the basis of available rheological measurements, that solid layers of nitrogen ice with a thickness in excess of about one kilometre should undergo convection for estimated present-day heat-flow conditions on Pluto. More importantly, we show numerically that convective overturn in a several-kilometre-thick layer of solid nitrogen can explain the great lateral width of the cells. The temperature dependence of nitrogen-ice viscosity implies that the ice layer convects in the so-called sluggish lid regime, a unique convective mode not previously definitively observed in the Solar System. Average surface horizontal velocities of a few centimetres a year imply surface transport or renewal times of about 500,000 years, well under the ten-million-year upper-limit crater retention age for Sputnik Planum. Similar convective surface renewal may also occur on other dwarf planets in the Kuiper belt, which may help to explain the high albedos shown by some of these bodies.
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-09-01
    Description: Corrigendum: Convection in a volatile nitrogen-ice-rich layer drives Pluto’s geological vigour Nature 537, 7618 (2016). doi:10.1038/nature18937 Authors: William B. McKinnon, Francis Nimmo, Teresa Wong, Paul M. Schenk, Oliver L. White, J. H. Roberts, J. M. Moore, J. R. Spencer, A. D. Howard, O. M. Umurhan, S. A. Stern, H. A. Weaver, C. B. Olkin, L. A. Young & K. E. Smith Nature534, 82–85 (2016); doi:10.1038/nature18289In the list of the New Horizons Geology, Geophysics and Imaging Theme Team, two members were inadvertently omitted: Richard P. Binzel and Alissa Earle (both affiliated with Massachusetts Institute of Technology, Cambridge, Massachusetts
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...