GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Newcastle-upon-Tyne :Cambridge Scholars Publishing,
    Keywords: Education-Congresses. ; Electronic books.
    Description / Table of Contents: This volume will provide eco-socially-oriented science and environmental educators with a diverse set of examples of how science and environmental learning for students and their co-learner teachers can be enacted in ways which contribute to their understanding of, commitment to and capabilities towards, living for a more eco-socially just and, therefore, more sustainable world. Science and environmental learning is set within a challenging framework, one that entails critical, transdisciplinary learning and acting, and values all the human and other-than-human beings sharing Earth's rich, but finite, resources.The text asserts that ethical contemporary science and environmental education, which practitioners might find within science, technology, engineering, and mathematics (STEM), will have at centre-stage not merely more factual knowledge, but also the development of learners' affect and behaviour towards acting for eco-social justice. This will demand that learners more fully appreciate not only the necessity to transition swiftly to living within planetary boundaries, but also the requirements of ethical living--that humans share health and well-being more equally with their own and all other species.Further, the book proposes that eco-socially responsible science and environmental education must be set within a transdisciplinary and integral framework, one in which curriculum and pedagogy are embedded in everyday practice. In this transition project from unsustainable inequities to eco-social justice, teachers and community leaders need to work with their students/citizens in envisioning preferable futures, and developing shared knowledge, values, dispositions, courage and capabilities to work towards such futures, and in genuine attempts at affecting them.
    Type of Medium: Online Resource
    Pages: 1 online resource (188 pages)
    Edition: 1st ed.
    ISBN: 9781527535992
    DDC: 363.700712
    Language: English
    Note: Intro -- Contents -- List of Figures -- List of Tables -- Acknowledgements -- Note on Book Cover and Chapter Primary Images -- Chapter One -- Chapter Two -- Chapter Three -- Chapter Four -- Chapter Five -- Chapter Six -- Chapter Seven -- Bibliography.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Milton :CRC Press LLC,
    Keywords: Ecology-Statistical methods. ; Electronic books.
    Description / Table of Contents: This handbook focuses on the enormous literature applying statistical methodology and modelling to environmental and ecological processes.
    Type of Medium: Online Resource
    Pages: 1 online resource (876 pages)
    Edition: 1st ed.
    ISBN: 9781498752121
    Series Statement: Chapman and Hall/CRC Handbooks of Modern Statistical Methods Series
    DDC: 363.700727
    Language: English
    Note: Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- 1: Introduction -- I: Methodology for Statistical Analysis of Environmental Processes -- 2: Modeling for environmental and ecological processes -- 2.1 Introduction -- 2.2 Stochastic modeling -- 2.3 Basics of Bayesian inference -- 2.3.1 Priors -- 2.3.2 Posterior inference -- 2.3.3 Bayesian computation -- 2.4 Hierarchical modeling -- 2.4.1 Introducing uncertainty -- 2.4.2 Random effects and missing data -- 2.5 Latent variables -- 2.6 Mixture models -- 2.7 Random effects -- 2.8 Dynamic models -- 2.9 Model adequacy -- 2.10 Model comparison -- 2.10.1 Bayesian model comparison -- 2.10.2 Model comparison in predictive space -- 2.11 Summary -- 3: Time series methodology -- 3.1 Introduction -- 3.2 Time series processes -- 3.3 Stationary processes -- 3.3.1 Filtering preserves stationarity -- 3.3.2 Classes of stationary processes -- 3.3.2.1 IID noise and white noise -- 3.3.2.2 Linear processes -- 3.3.2.3 Autoregressive moving average processes -- 3.4 Statistical inference for stationary series -- 3.4.1 Estimating the process mean -- 3.4.2 Estimating the ACVF and ACF -- 3.4.3 Prediction and forecasting -- 3.4.4 Using measures of correlation for ARMA model identification -- 3.4.5 Parameter estimation -- 3.4.6 Model assessment and comparison -- 3.4.7 Statistical inference for the Canadian lynx series -- 3.5 Nonstationary time series -- 3.5.1 A classical decomposition for nonstationary processes -- 3.5.2 Stochastic representations of nonstationarity -- 3.6 Long memory processes -- 3.7 Changepoint methods -- 3.8 Discussion and conclusions -- 4: Dynamic models -- 4.1 Introduction -- 4.2 Univariate Normal Dynamic Linear Models (NDLM) -- 4.2.1 Forward learning: the Kalman filter -- 4.2.2 Backward learning: the Kalman smoother -- 4.2.3 Integrated likelihood. , 4.2.4 Some properties of NDLMs -- 4.2.5 Dynamic generalized linear models (DGLM) -- 4.3 Multivariate Dynamic Linear Models -- 4.3.1 Multivariate NDLMs -- 4.3.2 Multivariate common-component NDLMs -- 4.3.3 Matrix-variate NDLMs -- 4.3.4 Hierarchical dynamic linear models (HDLM) -- 4.3.5 Spatio-temporal models -- 4.4 Further aspects of spatio-temporal modeling -- 4.4.1 Process convolution based approaches -- 4.4.2 Models based on stochastic partial differential equations -- 4.4.3 Models based on integro-difference equations -- 5: Geostatistical Modeling for Environmental Processes -- 5.1 Introduction -- 5.2 Elements of point-referenced modeling -- 5.2.1 Spatial processes, covariance functions, stationarity and isotropy -- 5.2.2 Anisotropy and nonstationarity -- 5.2.3 Variograms -- 5.3 Spatial interpolation and kriging -- 5.4 Summary -- 6: Spatial and spatio-temporal point processes in ecological applications -- 6.1 Introduction - relevance of spatial point processes to ecology -- 6.2 Point processes as mathematical objects -- 6.3 Basic definitions -- 6.4 Exploratory analysis - summary characteristics -- 6.4.1 The Poisson process-a null model -- 6.4.2 Descriptive methods -- 6.4.3 Usage in ecology -- 6.5 Point process models -- 6.5.1 Modelling environmental heterogeneity - inhomogeneous Poisson processes and Cox processes -- 6.5.2 Modelling clustering - Neyman Scott processes -- 6.5.3 Modelling inter-individual interaction - Gibbs processes -- 6.5.4 Model fitting - approaches and software -- 6.5.4.1 Approaches -- 6.5.4.2 Relevant software packages -- 6.6 Point processes in ecological applications -- 6.7 Marked point processes - complex data structures -- 6.7.1 Different roles of marks in point patterns -- 6.7.2 Complex models - dependence between marks and patterns -- 6.7.3 Marked point pattern models reflecting the sampling process. , 6.8 Modelling partially observed point patterns -- 6.8.1 Point patterns observed in small subareas -- 6.8.2 Distance sampling -- 6.9 Discussion -- 6.9.1 Spatial point processes and geo-referenced data -- 6.9.2 Spatial point process modeling and statistical ecology -- 6.9.3 Other data structures -- 6.9.3.1 Telemetry data -- 6.9.3.2 Spatio-temporal patterns -- 6.9.4 Conclusion -- 6.10 Acknowledgments -- 7: Data assimilation -- 7.1 Introduction -- 7.2 Algorithms for data assimilation -- 7.2.1 Optimal interpolation -- 7.2.2 Variational approaches -- 7.2.3 Sequential approaches: the Kalman filter -- 7.3 Statistical approaches to data assimilation -- 7.3.1 Joint modeling approaches -- 7.3.2 Regression-based approaches -- 8: Univariate and Multivariate Extremes for the Environmental Sciences -- 8.1 Extremes and Environmental Studies -- 8.2 Univariate Extremes -- 8.2.1 Theoretical underpinnings -- 8.2.2 Modeling Block Maxima -- 8.2.3 Threshold exceedances -- 8.2.4 Regression models for extremes -- 8.2.5 Application: Fitting a time-varying GEV model to climate model output -- 8.2.5.1 Analysis of individual ensembles and all data -- 8.2.5.2 Borrowing strength across locations -- 8.3 Multivariate Extremes -- 8.3.1 Multivariate EVDs and componentwise block maxima -- 8.3.2 Multivariate threshold exceedances -- 8.3.3 Application: Santa Ana winds and dryness -- 8.3.3.1 Assessing tail dependence -- 8.3.3.2 Risk region occurrence probability estimation -- 8.4 Conclusions -- 9: Environmental Sampling Design -- 9.1 Introduction -- 9.2 Sampling Design for Environmental Monitoring -- 9.2.1 Design framework -- 9.2.2 Model-based design -- 9.2.2.1 Covariance estimation-based criteria -- 9.2.2.2 Prediction-based criteria -- 9.2.2.3 Mean estimation-based criteria -- 9.2.2.4 Multi-objective and entropy-based criteria -- 9.2.3 Probability-based spatial design. , 9.2.3.1 Simple random sampling -- 9.2.3.2 Systematic random sampling -- 9.2.3.3 Stratified random sampling -- 9.2.3.4 Variable probability sampling -- 9.2.4 Space-filling designs -- 9.2.5 Design for multivariate data and stream networks -- 9.2.6 Space-time designs -- 9.2.7 Discussion -- 9.3 Sampling for Estimation of Abundance -- 9.3.1 Distance sampling -- 9.3.1.1 Standard probability-based designs -- 9.3.1.2 Adaptive distance sampling designs -- 9.3.1.3 Designed distance sampling experiments -- 9.3.2 Capture-recapture -- 9.3.2.1 Standard capture-recapture -- 9.3.2.2 Spatial capture-recapture -- 9.3.3 Discussion -- 10: Accommodating so many zeros: univariate and multivariate data -- 10.1 Introduction -- 10.2 Basic univariate modeling ideas -- 10.2.1 Zeros and ones -- 10.2.2 Zero-inflated count data -- 10.2.2.1 The k-ZIG -- 10.2.2.2 Properties of the k-ZIG model -- 10.2.2.3 Incorporating the covariates -- 10.2.2.4 Model fitting and inference -- 10.2.2.5 Hurdle models -- 10.2.3 Zeros with continuous density G(y) -- 10.3 Multinomial trials -- 10.3.1 Ordinal categorical data -- 10.3.2 Nominal categorical data -- 10.4 Spatial and spatio-temporal versions -- 10.5 Multivariate models with zeros -- 10.5.1 Multivariate Gaussian models -- 10.5.2 Joint species distribution models -- 10.5.3 A general framework for zero-dominated multivariate data -- 10.5.3.1 Model elements -- 10.5.3.2 Specific data types -- 10.6 Joint Attribute Modeling Application -- 10.6.1 Host state and its microbiome composition -- 10.6.2 Forest traits -- 10.7 Summary and Challenges -- 11: Gradient Analysis of Ecological Communities (Ordination) -- 11.1 Introduction -- 11.2 History of ordination methods -- 11.3 Theory and background -- 11.3.1 Properties of community data -- 11.3.2 Coenospace -- 11.3.3 Alpha, beta, gamma diversity -- 11.3.4 Ecological similarity and distance. , 11.4 Why ordination? -- 11.5 Exploratory analysis and hypothesis testing -- 11.6 Ordination vs. Factor Analysis -- 11.7 A classification of ordination -- 11.8 Informal techniques -- 11.9 Distance-based techniques -- 11.9.1 Polar ordination -- 11.9.1.1 Interpretation of ordination scatter plots -- 11.9.2 Principal coordinates analysis -- 11.9.3 Nonmetric Multidimensional Scaling -- 11.10 Eigenanalysis-based indirect gradient analysis -- 11.10.1 Principal Components Analysis -- 11.10.2 Correspondence Analysis -- 11.10.3 Detrended Correspondence Analysis -- 11.10.4 Contrast between DCA and NMDS -- 11.11 Direct gradient analysis -- 11.11.1 Canonical Correspondence Analysis -- 11.11.2 Environmental variables in CCA -- 11.11.3 Hypothesis testing -- 11.11.4 Redundancy Analysis -- 11.12 Extensions of direct ordination -- 11.13 Conclusions -- II: Topics in Ecological Processes -- 12: Species distribution models -- 12.1 Aims of species distribution modelling -- 12.2 Example data used in this chapter -- 12.3 Single species distribution models -- 12.4 Joint species distribution models -- 12.4.1 Shared responses to environmental covariates -- 12.4.2 Statistical co-occurrence -- 12.5 Prior distributions -- 12.6 Acknowledgments -- 13: Capture-Recapture and distance sampling to estimate population sizes -- 13.1 Basic ideas -- 13.2 Inference for closed populations -- 13.2.1 Censuses and finite population sampling -- 13.2.2 The problem of imperfect detection -- 13.2.3 Capture-recapture on closed populations -- 13.2.4 Distance sampling methods on closed populations -- 13.2.5 N-mixture models for closed populations -- 13.2.6 Count regression -- 13.3 Inference for open populations -- 13.3.1 Crosbie-Manly-Schwarz-Arnason model -- 13.3.2 Cormack-Jolly-Seber model and tag-recovery models -- 13.3.3 Pollock's robust design. , 13.3.4 Capture recapture models for population growth rate.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Singapore :Springer Singapore Pte. Limited,
    Keywords: Forests and forestry. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (442 pages)
    Edition: 1st ed.
    ISBN: 9789811019654
    Series Statement: Biofuels and Biorefineries Series
    Language: English
    Note: Intro -- Preface -- Acknowledgements -- Contents -- Contributors -- Editors' Biography -- Part I: Lignin and Its Production -- Chapter 1: Properties, Chemical Characteristics and Application of Lignin and Its Derivatives -- 1.1 Occurrence of Lignin in Biomass -- 1.1.1 Source, Monolignol Constituents and Sub-unit Structures -- 1.1.2 Distribution, Content and Chemical Structures of Lignin Sub-units -- 1.1.3 Biological Functions -- 1.1.4 Sources of Technical Lignin and Their Promise in Bio-­refining Process -- 1.2 Techniques for Determining Structural and Chemical Features of Lignin -- 1.2.1 Importance of Lignin Chemistry -- 1.2.2 Lignin Content -- 1.2.2.1 Wet Chemistry Methods -- 1.2.2.2 Spectroscopic Methods -- 1.2.3 Distribution of Lignin -- 1.2.3.1 Scanning Electron Microscopy and Atomic Force Microscopy Methods -- 1.2.3.2 Spectroscopy and Other Microscopy Methods -- 1.2.4 Molecular Weight and Polydispersity -- 1.2.5 Functional Side-Chain Groups -- 1.2.5.1 Nuclear Magnetic Resonance Methods -- 1.2.5.2 UV and GC-FID Methods -- 1.2.6 Content of Phenolic Units of Lignin -- 1.2.7 Content of Inter-molecular Linkages -- 1.2.7.1 13C- and 31P NMR Methods -- 1.2.7.2 FT-IR Spectroscopy Method -- 1.2.8 Lignin-Lignin Linkages and Macromolecular Assembly -- 1.2.8.1 Chemical Oxidation and GC-MS/FID Method -- 1.2.8.2 Pyrolysis Degradation and GC-MS/FID Method -- 1.2.8.3 Chemo-Thermo Degradation Method -- 1.2.8.4 Enzymatic Oxidization and Resonance Raman Spectroscopy Method -- 1.3 Derivatization and End-Use of Lignin and Lignin Derivatives -- 1.3.1 Sources of Lignocellulosic Biomass for Technical Lignin Derivatives -- 1.3.2 Application of Lignin and Lignin Derivatives -- 1.3.2.1 Energy -- 1.3.2.2 Renewable Chemicals -- 1.3.2.3 Materials and Additives -- 1.4 Conclusions and Future Outlook -- References. , Chapter 2: Extraction of Technical Lignins from Pulping Spent Liquors, Challenges and Opportunities -- 2.1 Introduction -- 2.2 Kraft Pulping Process -- 2.2.1 Properties of Black Liquor -- 2.2.2 Acidification -- 2.2.3 Membrane -- 2.2.4 Electrolysis -- 2.2.5 Solvent -- 2.3 Prehydrolysis Based Kraft Process -- 2.3.1 Properties of PHL -- 2.3.2 Acidification of PHL -- 2.3.3 Adsorption -- 2.3.4 Flocculation -- 2.3.5 In Situ Adsorption/Flocculation System -- 2.4 Spent Liquor of Sulfite Process -- 2.4.1 Properties of Spent Liquor -- 2.4.2 Membrane -- 2.4.3 Amine Extraction -- 2.4.4 Electrolysis -- 2.4.5 Ion Exchange Resin -- 2.5 Isolation of Lignosulfonate from Spent Liquor of NSSC Process -- 2.5.1 Properties of Spent Liquor in NSSC Process -- 2.5.2 Adsorption/Flocculation/Coagulation -- 2.5.3 Solvent Extraction -- 2.6 Conclusions and Future Outlook -- References -- Chapter 3: Recovery of Low-Ash and Ultrapure Lignins from Alkaline Liquor By-Product Streams -- 3.1 Introduction and Background -- 3.1.1 Low-Ash Lignins from Alkaline Liquors -- 3.1.2 From Low-Ash to Ultrapure Lignins -- 3.2 Low-Ash Lignins via the SLRP Process -- 3.2.1 Procedure -- 3.2.1.1 Carbonation -- 3.2.1.2 Acidification -- 3.2.1.3 Filtration -- 3.2.1.4 Vent-Gas Capture -- 3.2.2 Properties of Liquid-Lignin Phase -- 3.2.3 Fractionating the Liquid-Lignin Phase via SLRP for Control of the Bulk and Molecular Properties of Lignin -- 3.3 Ultrapure Lignins via the ALPHA Process -- 3.3.1 Liquid-Liquid Equilibrium Phase Behavior for the Acetic Acid-Water-Lignin System -- 3.3.2 ALPHA as a Single-Stage, Batch Process -- 3.3.3 Two-Stage Batch ALPHA for Generating Ultrapure Lignins -- 3.3.4 ALPHA as a Continuous Process: Minimizing Residence Times and Maximizing Throughputs for Ultrapure Lignins -- 3.4 Conclusions and Future Outlook -- References -- Part II: Biological Conversion. , Chapter 4: Lignin Degrading Fungal Enzymes -- 4.1 Introduction -- 4.2 Carbohydrate Active Enzyme Database (CAZy) -- 4.3 Fungal Oxidative Lignin Enzymes (FOLy) -- 4.4 Lignin Oxidizing Enzymes (LO) -- 4.4.1 Laccases (EC 1.10.3.2, Benzenediol: Oxygen Oxidoreductase) -- 4.4.2 Peroxidases (EC:1.11.1.x) -- 4.4.3 Lignin Peroxidases (E.C. 1.11.1.14) -- 4.4.4 Manganese Peroxidases (EC 1.11.1.13) -- 4.4.5 Versatile Peroxidases -- 4.5 Cellobiose Dehydrogenase -- 4.6 Lignin Degrading Auxiliary Enzymes (LDA) -- 4.6.1 Aryl Alcohol Oxidase -- 4.6.2 Vanillyl Alcohol Oxidase -- 4.6.3 Glyoxal Oxidase -- 4.6.4 Pyranose Oxidase -- 4.6.5 Galactose Oxidase -- 4.6.6 Glucose Oxidase -- 4.6.7 Benzoquinone Reductase -- 4.7 A Short Note on Genome Sequencing Studies of Lignin Degrading Fungi -- 4.8 Conclusion and Future Outlook -- References -- Chapter 5: Bacterial Enzymes for Lignin Oxidation and Conversion to Renewable Chemicals -- 5.1 Discovery of Lignin-Metabolising Bacteria -- 5.2 Bacterial Enzymes for Lignin Biotransformation -- 5.2.1 Dye-Decolorizing Peroxidases -- 5.2.2 Bacterial Laccases -- 5.2.3 Glutathione-Dependent β-Etherase Enzymes -- 5.2.4 Other Lignin-Metabolising Enzymes -- 5.3 Metabolic Pathways for Lignin Metabolism in Bacteria -- 5.4 Use of Metabolic Engineering for Generation of Renewable Chemicals from Lignin -- 5.5 Conclusions and Future Outlook -- References -- Chapter 6: Lignin Biodegradation with Fungi, Bacteria and Enzymes for Producing Chemicals and Increasing Process Efficiency -- 6.1 Introduction -- 6.2 Fungal Degradation -- 6.2.1 Delignification -- 6.2.2 Waste Treatment -- 6.2.3 Chemical Production -- 6.2.4 Perspectives -- 6.3 Bacterial Degradation -- 6.3.1 Delignification -- 6.3.2 Chemical Production -- 6.3.3 Perspectives -- 6.4 Enzymatic Degradation -- 6.4.1 Laccases -- 6.4.2 Peroxidases -- 6.4.3 Cocktails. , 6.4.4 Bioinspired Enzyme-Like Synthetic Compounds -- 6.4.5 Perspectives -- 6.5 Conclusion and Future Outlook -- References -- Part III: Chemical Conversion -- Chapter 7: Chemical Modification of Lignin for Renewable Polymers or Chemicals -- 7.1 Introduction -- 7.1.1 Lignin: An Important Renewable Resource -- 7.1.2 Possible Uses of Lignin -- 7.1.3 The Types of Chemical Modifications Carried Out on Lignin -- 7.1.3.1 Alkylation and Oxidation -- 7.1.3.2 Alkylation and Thioacidolysis -- 7.1.3.3 Halogenation -- 7.1.3.4 Nitration -- 7.1.3.5 Amination -- 7.1.3.6 Phosphitylation -- 7.1.3.7 Other Chemical Modifications of Lignin -- 7.2 Depolymerization of Modified Lignin -- 7.2.1 Sequential Lignin Modification Applied to Lignin Structural Analysis -- 7.2.2 Benzylic Oxidations Followed by Cleavage as a Route to Chemicals -- 7.3 Lignin Modification Leading to Novel Polymeric Materials -- 7.3.1 Overview -- 7.3.2 Reaction with Mono-functional Monomers -- 7.3.2.1 'Grafting Onto' Approach -- 7.3.2.2 'Grafting From' Approach -- 7.3.3 Reaction with Multi-functional Monomers -- 7.3.3.1 Phenol Formaldehyde Thermoset Materials -- 7.3.3.2 Polyurethanes -- 7.3.4 Polymer Blending -- 7.3.5 Smart Lignin Materials -- 7.4 Concluding Remarks & -- Future Outlook -- References -- Chapter 8: Carbon Materials from Lignin and Their Applications -- 8.1 Introduction -- 8.2 Activated Carbons from Lignin -- 8.2.1 Physical Activation -- 8.2.2 Chemical Activation -- 8.2.3 Applications of Lignin-Derived Activated Carbons -- 8.2.3.1 Applications in Adsorption -- 8.2.3.2 Applications in Catalysis -- 8.3 Lignin-Based Carbon Fibers -- 8.3.1 Lignin-Based CFs by Melt-Spinning Methods -- 8.3.2 Electrospinning -- 8.3.3 Oxidative Thermostabilization of Lignin Fibers -- 8.3.4 Potential Applications of Lignin-Based Carbon Fibers -- 8.3.4.1 CFs for Structural Applications. , 8.3.4.2 CFs for Functional Applications -- 8.4 Templated Carbons from Lignin -- 8.5 Lignin Graphitization -- 8.6 Conclusions and Future Outlook -- References -- Chapter 9: Biofuels and Chemicals from Lignin Based on Pyrolysis -- 9.1 Introduction -- 9.2 Fundamentals of Lignin Pyrolysis -- 9.2.1 Lignin Structures Related to Complexity of Pyrolysis -- 9.2.2 Pyrolysis Kinetics of Lignin -- 9.2.3 Py-GC/MS of Lignin -- 9.2.4 Factors Affecting Lignin Pyrolysis -- 9.3 Pyrolysis of Technical Lignin -- 9.3.1 Pyrolysis of Lignin in Lab-Scale Reactors -- 9.3.2 Properties of Lignin Pyrolysis Oil -- 9.4 Catalytic Upgrading of Lignin -- 9.4.1 Catalytic Upgrading of Pyrolysis Vapor of Lignin -- 9.4.2 Catalytic Upgrading of Phenolic Oil -- 9.5 Application of Lignin Pyrolysis Products -- 9.6 Conclusions and Future Outlook -- References -- Chapter 10: Lignin Depolymerization (LDP) with Solvolysis for Selective Production of Renewable Aromatic Chemicals -- 10.1 Introduction -- 10.2 Lignin in Conventional Heating -- 10.2.1 Hydrogenolysis -- 10.2.2 Hydrogen-Donor Solvent System -- 10.2.3 Hydrogen-Involved System -- 10.2.4 Oxidativelysis -- 10.2.5 Organometallic Catalysts -- 10.2.6 Metal-Free-Organic Catalysts -- 10.2.7 Acid/Base Catalysts -- 10.2.8 Metal Salt Catalysts -- 10.2.9 Two-Step LDP -- 10.3 LDP Assisted by microwave Heating -- 10.3.1 Hydrogenolysis -- 10.3.2 Oxidativelysis -- 10.4 Conclusions and Future Outlook -- References -- Chapter 11: Molecular Mechanisms in the Thermochemical Conversion of Lignins into Bio-Oil/Chemicals and Biofuels -- 11.1 Introduction -- 11.2 Lignin Devolatilization Temperature -- 11.3 Pyrolysis Products and Effects of Temperature -- 11.4 Primary Pyrolysis Reactions -- 11.4.1 Model Compound Reactivity -- 11.4.2 Ether Cleavage Mechanisms -- 11.4.3 Radical Chain Reactions -- 11.4.4 Re-polymerization and Side Chain Conversion. , 11.4.5 Side-Chain Conversion Mechanism.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Singapore :Springer Singapore Pte. Limited,
    Keywords: Forests and forestry. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (481 pages)
    Edition: 1st ed.
    ISBN: 9789811041723
    Series Statement: Biofuels and Biorefineries Series
    DDC: 660.63
    Language: English
    Note: Intro -- Preface -- Acknowledgments -- Contents -- Contributors -- About the Editors -- Part I: Production of Sugars -- Chapter 1: Hydrolysis of Lignocellulosic Biomass to Sugars -- 1.1 Introduction -- 1.1.1 Lignocellulosic Biomass -- 1.1.1.1 Biomass Cell Wall Structure -- 1.1.1.2 Cellulose -- 1.1.1.3 Hemicellulose -- 1.1.1.4 Lignin -- 1.1.2 Conversion Pathways from Lignocellulose Biomass to Sugars -- 1.1.3 Biomass Recalcitrance -- 1.2 Pretreatment -- 1.2.1 Thermochemical Pretreatment -- 1.2.1.1 Dilute Acid (DA) Pretreatment -- 1.2.1.2 Steam Explosion (SE) Pretreatment -- 1.2.1.3 Liquid Hot Water (LHW) Pretreatment -- 1.2.1.4 Ammonia Fiber Expansion (AFEX) Pretreatment -- 1.2.1.5 Ethylenediamine (EDA) Pretreatment -- 1.2.1.6 Aqueous Ammonia (AA) Pretreatment -- 1.2.1.7 Lime Pretreatment -- 1.2.1.8 Ionic Liquid (IL) Pretreatment -- 1.2.1.9 Organosolv Pretreatment -- 1.2.1.10 COSLIF Pretreatment -- 1.2.1.11 Sulfite Pretreatment -- 1.2.1.12 Wet Oxidation Pretreatment -- 1.2.2 Biological Pretreatment -- 1.2.3 Biomass Harvest and Storage -- 1.2.4 Mechanical Comminution -- 1.2.5 Fractionation -- 1.3 Enzymes for Lignocellulose Hydrolysis -- 1.3.1 Classification of Enzymes -- 1.3.2 Enzyme-Cellulose Interaction -- 1.4 Factors Affecting Enzymatic Hydrolysis of Lignocellulose -- 1.4.1 Inhibitors to Enzymatic Hydrolysis -- 1.4.1.1 Lignin Non-productive Adsorption -- 1.4.1.2 Lignin Derived Phenolics -- 1.4.1.3 Oligo-saccharides -- 1.4.1.4 Products Inhibition -- 1.4.2 Additives to Improve Enzymatic Hydrolysis -- 1.4.2.1 Non-hydrolytic Proteins -- 1.4.2.2 Surfactants -- 1.4.2.3 Metal Ions -- 1.4.3 Synergistic Effect -- 1.4.4 High Solids Loading -- 1.5 Hydrolysis Strategy -- 1.5.1 Enzyme Recycling -- 1.5.2 Pelletization -- 1.5.3 Application of Bioconversion from Lignocellulose to Sugars-SSF Process and Fed-Batch for Bioethanol Production. , 1.6 Conclusions and Future Outlook -- References -- Part II: Production of Aldehydes -- Chapter 2: Sustainable Catalytic Strategies for C5-Sugars and Biomass Hemicellulose Conversion Towards Furfural Production -- 2.1 Introduction -- 2.1.1 Mechanistic Considerations of Furfural Formation -- 2.1.2 Industrial Furfural Manufacturing and Their Recent Updates -- 2.2 Emerging Strategies of Furfural Production -- 2.2.1 Homogeneous Catalysis -- 2.2.1.1 Metal Halides -- Fundamentals and Mechanism -- Interaction of Metal Halides with Water -- Furfural from C5-Sugars and Lignocellulosic Feedstocks -- Monophasic Aqueous and Non-aqueous Systems -- Biphasic Systems -- 2.2.1.2 Supercritical Fluids -- Supercritical Carbon Dioxide -- Furfural Formation from Pentoses and Biomass in Supercritical CO2 -- 2.2.1.3 Ionic Liquids -- Ionic Liquids Used as Acidic Catalysts -- Ionic Liquids Used as Both Solvents and Acidic Catalysts -- 2.2.2 Heterogeneous Catalysis -- 2.2.2.1 Zeolites (Microporous Catalysts) -- 2.2.2.2 Mesoporous Acid-Catalysts -- 2.2.2.3 Metal Oxides -- 2.3 Conclusions and Future Outlook -- References -- Chapter 3: Catalytic Production of 5-Hydroxymethylfurfural from Biomass and Biomass-Derived Sugars -- 3.1 Introduction -- 3.2 Platform Chemical 5-Hydroxymethylfurfural -- 3.3 Catalytic Production of 5-Hydroxymethylfurfural (5-HMF) from Fructose -- 3.3.1 Mineral Acid and Organic Acid as Catalysts -- 3.3.2 Solid Acids as Catalysts -- 3.3.3 Metal-Containing Catalysts -- 3.3.4 Other Catalytic Systems -- 3.4 Catalytic Production of 5-Hydroxymethylfurfural (5-HMF) from Glucose -- 3.4.1 Mineral Acids as Catalysts -- 3.4.2 Solid Acids as Catalysts -- 3.4.3 Metal-Containing Catalysts -- 3.4.4 Other Catalytic Systems -- 3.5 Catalytic Production of 5-Hydroxymethylfurfural (5-HMF) from Polysaccharides. , 3.6 Catalytic Production of 5-Hydroxymethylfurfural (5-HMF) from Biomass Feedstocks -- 3.7 Conclusions and Future Outlook -- References -- Chapter 4: 5-(Halomethyl)furfurals from Biomass and Biomass-Derived Sugars -- 4.1 Perspective on the 5-(Halomethyl)furfurals -- 4.2 Historical Reports of 5-(Halomethyl)furfural Preparation -- 4.3 Modern Approaches to 5-(Halomethyl)furfural Preparation -- 4.4 Halomethylfurfural Derivative Chemistry - Furanic Manifold -- 4.5 Halomethylfurfural Derivative Chemistry - Levulinic Manifold -- 4.6 Halomethylfurfural Derivative Chemistry - Advanced Targets -- 4.6.1 Medicinal Chemistry -- 4.6.2 Macrocyclic and Polymer Chemistry -- 4.6.3 Biofuels -- 4.6.4 Miscellaneous Value-Added Products -- 4.7 Conclusions and Future Outlook -- References -- Part III: Production of Acids -- Chapter 5: Levulinic Acid from Biomass: Synthesis and Applications -- 5.1 Introduction -- 5.2 Chemistry and Catalysis Towards the Formation of LA -- 5.2.1 Reaction Mechanism of LA Formation from Sugars -- 5.2.2 Synthesis of LA -- 5.2.2.1 Homogeneous Catalysts -- 5.2.2.2 Heterogeneous Catalysts -- 5.2.2.3 Biphasic Systems -- 5.3 Process Technology -- 5.3.1 Kinetic Studies on LA Synthesis -- 5.3.2 Product Separation and Isolation -- 5.3.3 Commercial Status of LA Production -- 5.4 Potential Applications of LA and Its Derivatives -- 5.4.1 Diphenolic Acid -- 5.4.2 Pyrrolidones -- 5.4.3 Levulinic Ketals -- 5.4.4 δ-Aminolevulinic Acid -- 5.4.5 Succinic Acid -- 5.4.6 γ-Valerolactone -- 5.4.7 Levulinate Esters -- 5.5 Conclusions and Future Outlook -- References -- Chapter 6: Catalytic Aerobic Oxidation of 5-Hydroxymethylfurfural (HMF) into 2,5-Furandicarboxylic Acid and Its Derivatives -- 6.1 Introduction -- 6.2 FDCA Production Using Different Methods in the Past -- 6.3 Current Methods for the Oxidation of HMF into FDCA. , 6.3.1 Electrocatalytic Synthesis of FDCA from HMF -- 6.3.2 Biocatalyst Method for the Synthesis of FDCA from HMF -- 6.3.3 Chemical Synthesis of FDCA from HMF by Homogeneous Catalyst -- 6.4 Catalytic Synthesis of FDCA from HMF by Supported Noble Metal Catalysts -- 6.4.1 Synthesis of FDCA from HMF Over Supported Pt Catalysts -- 6.4.2 Synthesis of FDCA from HMF Over Supported Pd Catalysts -- 6.4.3 Synthesis of FDCA from HMF Over Supported Au Catalysts -- 6.4.4 Synthesis of FDCA from HMF Over Supported Ru Catalysts -- 6.4.5 Mechanism of the Oxidation of HMF into FDCA Over Supported Metal Catalysts -- 6.4.6 Catalytic Synthesis of FDCA Over Non-Noble Metal Heterogeneous Catalysts -- 6.5 Catalytic Synthesis of FDCA from Carbohydrates -- 6.6 Catalytic Synthesis of FDCA Derivatives -- 6.7 Conclusions and Future Outlook -- 6.7.1 Conclusions -- 6.7.2 Future Outlook -- References -- Chapter 7: Production of Glucaric/Gluconic Acid from Biomass by Chemical Processes Using Heterogeneous Catalysts -- 7.1 Production of Gluconic Acid from Glucose Over Heterogeneous Catalysts -- 7.1.1 Pd and Pt Monometallic Catalysts -- 7.1.2 Pd-M and Pt-M Bimetallic Catalysts -- 7.1.3 Supported Au Catalysts -- 7.2 Production of Glucaric Acid Over Heterogeneous Catalysts -- 7.2.1 Productions of Glucaric Acid Using Solid Catalysts -- 7.2.2 Oxidation of Uronic Acid Using Solid Catalysts -- 7.3 Bifunctional Catalysts for Direct Production of Gluconic Acid -- 7.3.1 Bifunctional Sulfonated Activated-Carbon Supported Platinum Catalyst -- 7.3.2 Conversion of Starch -- 7.3.3 Conversion of Various Polysaccharides -- 7.3.4 Comparison of Pt/AC-SO3H Catalyst to Mixed Catalyst of AC-SO3H with Pt/AC -- 7.3.5 Cellobiose Conversion into Gluconic Acid Over Various Gold Catalysts -- 7.4 Conclusions and Future Outlook -- References. , Chapter 8: Production of 1,4-Diacids (Succinic, Fumaric, and Malic) from Biomass -- 8.1 Introduction -- 8.1.1 Platform Chemical Production Using a Biorefinery Concept -- 8.1.2 Current State and Perspectives of C4 Dicarboxylic Acids-Succinic, Malic, and Fumaric Acids -- 8.2 Upstream Processing -- 8.2.1 Microbial Producers -- 8.2.2 Metabolic Engineering Toward Higher Yield -- 8.2.3 Cofactor Engineering of Strains -- 8.3 Fermentation Process Engineering -- 8.3.1 Production of Succinic, Fumaric and Malic Acids Acid from Sugar -- 8.3.2 Alternative Substrates from Lignocellulosic Biomass -- 8.3.3 Cultivation Strategies with High Production Levels -- 8.4 Downstream Processing -- 8.4.1 Main Separation Unit Operations -- 8.4.2 Separation and Purification from the Crude Broth -- 8.4.3 In Situ Product Recovery (ISPR) -- 8.5 Final Remarks -- 8.5.1 Techno-Economics Challenges -- 8.5.2 Conclusions and Future Outlook -- References -- Part IV: Production of Alcohols -- Chapter 9: Production of Sorbitol from Biomass -- 9.1 Introduction -- 9.2 Sorbitol Industrial Importance -- 9.2.1 Sorbitol Market -- 9.2.2 Sorbitol as a Platform Chemical -- 9.3 Sorbitol Production from Biomass -- 9.3.1 Chemical Production of Sorbitol -- 9.3.2 Electrochemical Production of Sorbitol -- 9.3.3 Biotechnological Production of Sorbitol -- 9.3.4 Recovery and Purification of Sorbitol -- 9.4 Conclusions and Future Outlook -- References -- Chapter 10: Biotechnological Production of Xylitol from Biomass -- 10.1 Introduction -- 10.2 Xylitol-Producing Microorganisms and Metabolism -- 10.2.1 Metabolism of Xylitol Production -- 10.2.1.1 Bacteria -- 10.2.1.2 Filamentous Fungi -- 10.2.1.3 Yeasts -- 10.2.1.4 Strategies Relative to Microorganisms and Their Metabolism to Increase the Production of Xylitol -- 10.3 Use of Different Biomass for Xylitol Biotechnological Production. , 10.3.1 Pre-treatment of Biomass and Detoxification of Hemicellulosic Hydrolysates to Produce Xylitol.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Dordrecht :Springer Netherlands,
    Keywords: Electric engineering. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (375 pages)
    Edition: 1st ed.
    ISBN: 9789401773300
    Series Statement: Biofuels and Biorefineries Series ; v.5
    Language: English
    Note: Intro -- Preface -- Acknowledgments -- Contents -- Contributors -- About the Editors -- Part I: Bioconversion -- Chapter 1: Dark Fermentative Hydrogen Production from Lignocellulosic Biomass -- 1.1 Introduction -- 1.2 Fundamentals of Dark Hydrogen Fermentations -- 1.3 Advantages of Dark Hydrogen Fermentations -- 1.4 Effect of Process Parameters on Dark Hydrogen Fermentation -- 1.5 Lignocellulosic Biomass Sources -- 1.6 Methods of Lignocellulosic Biomass Pretreatment for Dark Hydrogen Fermentations -- 1.7 Hydrogen Yields and Productivities from Lignocellulosic Hydrolysates -- 1.8 Coproduct Valorization -- 1.9 Challenges -- 1.10 Conclusions and Future Outlook -- References -- Chapter 2: Biohydrogen Production via Lignocellulose and Organic Waste Fermentation -- 2.1 Introduction to Feedstocks -- 2.1.1 Organic Wastes -- 2.1.2 Lignocelluloses -- 2.2 Pretreatment of Lignocellulosic Feedstock -- 2.2.1 Physical -- 2.2.2 Chemical -- 2.2.3 Physicochemical -- 2.2.4 Biological -- 2.2.5 Organosolv Pretreatment -- 2.3 Fermentative Hydrogen Production -- 2.3.1 Microorganisms -- 2.3.2 Fermenter Types -- 2.3.2.1 CSTR -- 2.3.2.2 UASB -- 2.3.2.3 Anaerobic Biofilm and Granule Reactor -- 2.3.2.4 Membrane Bioreactor -- 2.3.3 Environmental Operational Conditions -- 2.3.3.1 Substrate Concentration -- 2.3.3.2 Nutrients and Metals -- 2.3.3.3 pH -- 2.3.3.4 Temperature -- 2.3.3.5 HRT -- 2.4 Conclusions and Future Outlook -- References -- Chapter 3: High-Yield Production of Biohydrogen from Carbohydrates and Water Based on In Vitro Synthetic (Enzymatic) Pathways -- 3.1 Introduction -- 3.1.1 Hydrogen -- 3.1.2 Hydrogen Production Approaches -- 3.1.3 In Vitro (Cell-Free) Enzymatic Pathways for Water Splitting -- 3.2 Design of In Vitro Synthetic Enzymatic Pathways -- 3.3 Examples of Hydrogen Production from Carbohydrates -- 3.3.1 Hydrogen Production from Starch and Cellodextrins. , 3.3.2 Hydrogen Production from Xylose -- 3.3.3 Hydrogen Production from Sucrose -- 3.3.4 Hydrogen Production from Biomass Sugars -- 3.3.5 High-Rate Hydrogen Production from Glucose 6-Phosphate -- 3.4 Technical Obstacles to Low-Cost H2 Production -- 3.4.1 Enzyme Cost and Stability -- 3.4.2 Enzymatic Reaction Rates -- 3.4.3 Cofactor Cost and Stability -- 3.5 Conceptual Obstacles to Enzymatic H2 Production -- 3.6 Conclusions and Future Outlook -- References -- Part II: Thermoconversion -- Chapter 4: Hydrogen Production from Biomass Gasification -- 4.1 Introduction -- 4.2 Biomass Gasification Technologies -- 4.3 Autothermal and Allothermal Gasification -- 4.4 Product Gas Quality -- 4.5 Supercritical Water Gasification Technology -- 4.6 Hydrogen Separation from Biomass Gasification -- 4.6.1 Membrane Separation -- 4.6.2 Membrane Integrated in the Gasification Reactor (Reformer) -- 4.6.3 Reformer and Membrane Modules -- 4.6.4 Water-Gas Shift Reaction -- 4.6.5 Water-Gas Shift with Pressure Swing Adsorption -- 4.6.6 Adsorption Enhanced Reforming -- 4.6.7 Typical Hydrogen Production Process Integrated in Biomass Gasification Systems -- 4.7 Hydrogen Production by Reaction Integrated Novel Gasification -- 4.8 Economics of Hydrogen Production from Biomass Gasification -- 4.9 Conclusions and Future Outlook -- References -- Chapter 5: Hydrogen Production from Catalytic Biomass Pyrolysis -- 5.1 Introduction -- 5.2 Fundamentals of Biomass Pyrolysis -- 5.2.1 Composition and Characteristics of Lignocellulosic Biomass -- 5.2.2 Reaction Pathways and Types of Pyrolysis -- 5.2.3 Product Distribution and Characteristics -- 5.2.4 Pyrolysis Reactors -- 5.3 Catalysts -- 5.4 One-Step Processes -- 5.5 Multi-step Processes -- 5.5.1 Catalytic Steam Reforming of Bio-Oil -- 5.5.2 Catalytic Cracking of Bio-Oil -- 5.5.3 Other Approaches -- 5.6 Concluding Remarks and Future Outlook. , References -- Chapter 6: Low Carbon Production of Hydrogen by Methane Decarbonization -- 6.1 Introduction -- 6.2 Socioeconomic Benefits of Methane Decarbonization -- 6.3 Methane Pyrolysis Reaction -- 6.4 Technical Options for Methane Decarbonization -- 6.5 Concept Proposals -- 6.6 Economic Analysis -- 6.7 Application to Industrial Processes -- 6.7.1 Ammonia Production -- 6.7.2 Biofuel Production -- 6.8 Main Technological Problems -- 6.9 Conclusions and Future Outlook -- References -- Chapter 7: Hydrogen Production by Supercritical Water Gasification of Biomass -- 7.1 Introduction -- 7.2 Supercritical Fluids and Supercritical Water -- 7.2.1 The Physical Properties of Supercritical Water -- 7.2.2 The Role of Supercritical Water in Chemical Reactions -- 7.2.3 Gasification Reactions in Supercritical Water Media -- 7.3 Hydrogen Production by Supercritical Water Gasification -- 7.3.1 Influence of Process Parameters on Hydrogen Production -- 7.3.1.1 Temperature -- 7.3.1.2 Pressure -- 7.3.1.3 Residence Time -- 7.3.1.4 Feedstock Concentration -- 7.3.1.5 Oxidant Concentration -- 7.3.1.6 Use of Catalyst -- Alkali Catalysts -- NaOH -- KOH -- Na2CO3 -- K2CO3 -- Metal-Based Catalysts -- Nickel -- Ruthenium -- Other Metal Catalysts -- 7.3.2 Literature Studies -- 7.4 Conclusions and Future Outlook -- References -- Part III: Electrochemical and Solar Conversions -- Chapter 8: Hydrogen Production from Water and Air Through Solid Oxide Electrolysis -- 8.1 Introduction -- 8.2 Water Electrolysis -- 8.2.1 Alkaline Electrolyzer -- 8.2.2 PEM Electrolyzer -- 8.2.3 Solid Oxide Electrolysis Cells -- 8.3 Assessment and Application Status -- 8.3.1 Technical Assessment -- 8.3.2 Economic Assessment -- 8.3.3 Co-electrolysis of Steam and CO2 -- 8.4 Key Materials for SOECs -- 8.4.1 Electrolyte -- 8.4.2 Oxygen Electrode -- 8.4.3 Hydrogen Electrode. , 8.5 Performance Degradation of SOEC Electrodes -- 8.5.1 Oxygen Electrodes -- 8.5.1.1 LSM -- 8.5.1.2 MIEC Oxygen Electrodes -- 8.5.1.3 Degradation by Contaminants -- 8.5.1.4 Improved Durability via Reversible Operations -- 8.5.1.5 Development of Robust Oxygen Electrodes -- 8.5.2 Ni Cermet Hydrogen Electrodes -- 8.6 Conclusions and Future Outlook -- References -- Chapter 9: Bioelectrochemical Production of Hydrogen from Organic Waste -- 9.1 What Is Bioelectrochemical Production of Hydrogen? -- 9.2 MEC Principles and Advantages -- 9.3 MEC Architecture -- 9.4 Factors Affecting MEC Performance -- 9.4.1 Anode Electrode Materials and Anodic Biocatalysts -- 9.4.2 Cathode Electrode Materials and Cathodic Catalysts -- 9.4.3 Chamber Volume, Electrode Size, and Electrode Position -- 9.4.4 Separator -- 9.4.5 Power Supply -- 9.4.6 Substrates -- 9.4.7 Electrolyte -- 9.4.8 Other Operational Factors -- 9.5 Hydrogen Yield of Organic Waste-Fed and Scaled-Up MECs -- 9.5.1 Hydrogen Yield from Organic Waste in MECs -- 9.5.2 Hydrogen Yield in Scaled-Up MECs -- 9.6 Anodic Bacterial Community -- 9.7 Technological Challenges for Practical Implementation -- 9.7.1 Challenges Associated with the Anode and Electrolyte -- 9.7.1.1 Metabolic Diversity -- 9.7.1.2 Electron Losses by Methanogens -- 9.7.1.3 Electrode Resistance -- 9.7.1.4 Electrolyte Buffer Capacity and Conductivity -- 9.7.2 Challenges Associated with the Cathode -- 9.7.2.1 Expensive Catalysts and High Potential Losses -- 9.7.3 Challenges Associated with Cell Design and Separator -- 9.7.3.1 pH Imbalance Between Anode and Cathode Chambers -- 9.7.3.2 Biofouling on Surface of Membranes -- 9.7.3.3 Gas Crossover Through Membranes -- 9.7.3.4 Membraneless Single-Chambered Design -- 9.8 Conclusions and Future Outlook -- References -- Chapter 10: Solar Hydrogen Production -- 10.1 Introduction. , 10.2 The Growing Energy Demand Challenge -- 10.3 Solar Technologies -- 10.4 Solar Hydrogen Production -- 10.5 Thermochemical Processes -- 10.6 Materials for Hydrogen Production -- 10.7 Solar Reactor Concepts -- 10.8 Solar Fuels -- 10.9 Conclusions and Future Outlook -- References -- Part IV: Separations and Applications with Fuel Cells -- Chapter 11: Separation and Purification of Hydrogen Using CO2-Selective Facilitated Transport Membranes -- 11.1 Introduction -- 11.2 Membranes for H2 Purification -- 11.3 Polymeric Facilitated Transport Membranes for H2 Purification -- 11.4 Membranes for Low-Pressure H2 Purification -- 11.4.1 CO2 Transport Properties -- 11.4.2 H2S Transport Properties -- 11.4.3 Membrane Stability -- 11.4.4 Water-Gas-Shift (WGS) Membrane Reactor -- 11.4.5 Pilot-Scale Membrane Fabrication -- 11.5 Membranes for High-Pressure H2 Purification -- 11.5.1 Mixed Matrix Membranes -- 11.6 Potential Industrial Applications -- 11.6.1 Low-Pressure H2 Purification for Fuel Cells -- 11.6.2 High-Pressure H2 Purification -- 11.7 Conclusions and Future Outlook -- Nomenclature -- Greek Letter -- Subscripts -- Abbreviations -- References -- Chapter 12: Hydrogen Production for PEM Fuel Cells -- 12.1 Introduction -- 12.2 Membrane Reactors -- 12.2.1 Membrane Categories -- 12.2.2 Palladium-Based Membranes -- 12.3 High-Grade Hydrogen Generation for Fuel Cells from Reforming of Renewables in MRs -- 12.3.1 Ethanol Steam Reforming in MRs -- 12.3.2 Methanol Steam Reforming in MRs -- 12.4 Conclusions and Future Outlook -- References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Scientific Reports 8 (2018): 15740, doi:10.1038/s41598-018-33640-3.
    Description: Hurricanes passing over the ocean can mix the water column down to great depths and resuspend massive volumes of sediments on the continental shelves. Consequently, organic carbon and reduced inorganic compounds associated with these sediments can be resuspended from anaerobic portions of the seabed and re-exposed to dissolved oxygen (DO) in the water column. This process can drive DO consumption as sediments become oxidized. Previous studies have investigated the effect of hurricanes on DO in different coastal regions of the world, highlighting the alleviation of hypoxic conditions by extreme winds, which drive vertical mixing and re-aeration of the water column. However, the effect of hurricane-induced resuspended sediments on DO has been neglected. Here, using a diverse suite of datasets for the northern Gulf of Mexico, we find that in the few days after a hurricane passage, decomposition of resuspended shelf sediments consumes up to a fifth of the DO added to the bottom of the water column during vertical mixing. Despite uncertainty in this value, we highlight the potential significance of this mechanism for DO dynamics. Overall, sediment resuspension likely occurs over all continental shelves affected by tropical cyclones, potentially impacting global cycles of marine DO and carbon.
    Description: Support for J. Moriarty was provided by the USGS Mendenhall Program.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-26
    Description: Workshop held August 19-21, 2014, Woods Hole, MA
    Description: Relative to their surface area, continental margins represent some of the largest carbon fluxes in the global ocean, but sparse and sporadic sampling in space and time makes these systems difficult to characterize and quantify. Recognizing the importance of continental margins to the overall North American carbon budget, terrestrial and marine carbon cycle scientists have been collaborating on a series of synthesis, carbon budgeting, and modeling exercises for coastal regions of North America, which include the Gulf of Mexico, the Laurentian Great Lakes (LGL), and the coastal waters of the Atlantic, Pacific, and Arctic Oceans. The Coastal CARbon Synthesis (CCARS) workshops and research activities have been conducted over the past several years as a partner activity between the Ocean Carbon and Biogeochemistry (OCB) Program and the North American Carbon Program (NACP) to synthesize existing data and improve quantitative assessments of the North American carbon budget.
    Description: The authors of this science plan wish to acknowledge the generous support of NASA (NNX10AU78G) and NSF (OCE-1107285) for all of the CCARS activities, including a kickoff meeting (December 2010), a series of regional workshops (Atlantic coast, Gulf of Mexico, Pacific coast), and the final community workshop (August 2014).
    Repository Name: Woods Hole Open Access Server
    Type: Working Paper
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-10-21
    Description: Downhole density, gamma radioactivity, and magnetic susceptibility measurements in five drillholes at the Victoria property (located in the south range of the Sudbury basin) were analyzed to identify homogenous physical units. The fuzzy k-means clustering algorithm was used for unsupervised classification of the data. Four main physical units were identified in boreholes with distinct physical characteristics. Three of them were differentiated mainly based on different gamma ray and density values, and the fourth one was characterized by high magnetic susceptibility. Physical units were compared with rock types logged by geologists to determine which rock types corresponded to physical units. We found that there was a meaningful spatial and statistical correlation between physical units (characterized based on their physical property measurements) and lithological units as indicated by rock types at the Victoria property. However, not all rock types could be uniquely identified by the statistical classification, but a set of similar groups could be identified. Hence, identifying a group of rock types described by each physical unit can be used to translate physical data to/from lithological data. Alternatively, the physical log units could be used as a quality control procedure to check the geological logs, or to highlight areas where more careful logging or other investigation would be warranted.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-01-25
    Description: Observational analyses of running 5-year ocean heat content trends (H t ) and net downward top of atmosphere radiation (N) are significantly correlated (r~0.6) from 1960 to 1999, but a spike in H t in the early 2000s is likely spurious since it is inconsistent with estimates of N from both satellite observations and climate model simulations. Variations in N between 1960 and 2000 were dominated by volcanic eruptions, and are well simulated by the ensemble mean of coupled models from the Fifth Coupled Model Intercomparison Project (CMIP5). We find an observation-based reduction in N of -0.31±0.21 Wm -2 between 1999 and 2005 that potentially contributed to the recent warming slowdown, but the relative roles of external forcing and internal variability remain unclear. While present-day anomalies of N in the CMIP5 ensemble mean and observations agree, this may be due to a cancellation of errors in outgoing longwave and absorbed solar radiation.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-03-08
    Description: Article Levels of circulating thyrotropin and free thyroxine reflect thyroid function, however, their genetic underpinnings remain poorly understood. Taylor et al . take advantage of whole-genome sequence data from cohorts within the UK10K project to identify novel variants associated with these traits. Nature Communications doi: 10.1038/ncomms6681 Authors: Peter N. Taylor, Eleonora Porcu, Shelby Chew, Purdey J. Campbell, Michela Traglia, Suzanne J. Brown, Benjamin H. Mullin, Hashem A. Shihab, Josine Min, Klaudia Walter, Yasin Memari, Jie Huang, Michael R. Barnes, John P. Beilby, Pimphen Charoen, Petr Danecek, Frank Dudbridge, Vincenzo Forgetta, Celia Greenwood, Elin Grundberg, Andrew D. Johnson, Jennie Hui, Ee M. Lim, Shane McCarthy, Dawn Muddyman, Vijay Panicker, John R.B. Perry, Jordana T. Bell, Wei Yuan, Caroline Relton, Tom Gaunt, David Schlessinger, Goncalo Abecasis, Francesco Cucca, Gabriela L. Surdulescu, Wolfram Woltersdorf, Eleftheria Zeggini, Hou-Feng Zheng, Daniela Toniolo, Colin M. Dayan, Silvia Naitza, John P. Walsh, Tim Spector, George Davey Smith, Richard Durbin, J. Brent Richards, Serena Sanna, Nicole Soranzo, Nicholas J. Timpson, Scott G. Wilson
    Electronic ISSN: 2041-1723
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...