GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Data  (14)
  • 2015-2019  (14)
Document type
Source
Keywords
Publisher
Years
Year
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Trimborn, Scarlett; Hoppe, Clara Jule Marie; Taylor, Bettina B; Bracher, Astrid; Hassler, Christel S (2015): Physiological characteristics of open ocean and coastal phytoplankton communities of Western Antarctic Peninsula and Drake Passage waters. Deep Sea Research Part I: Oceanographic Research Papers, 98, 115-124, https://doi.org/10.1016/j.dsr.2014.12.010
    Publication Date: 2024-07-19
    Description: Photophysiological processes as well as uptake characteristics of iron and inorganic carbon were studied in inshore phytoplankton assemblages of the Western Antarctic Peninsula (WAP) and offshore assemblages of the Drake Passage. Chlorophyll a concentrations and primary productivity decreased from in- to offshore waters. The inverse relationship between low maximum quantum yields of photochemistry in PSII (Fv/Fm) and large sizes of functional absorption cross sections (sigma PSII) in offshore communities indicated iron-limitation. Congruently, the negative correlation between Fv/Fm values and iron uptake rates across our sampling locations suggest an overall better iron uptake capacity in iron-limited pelagic phytoplankton communities. Highest iron uptake capacities could be related to relative abundances of the haptophyte Phaeocystis antarctica. As chlorophyll a-specific concentrations of humic-like substances were similarly high in offshore and inshore stations, we suggest humic-like substances may play an important role in iron chemistry in both coastal and pelagic phytoplankton assemblages. Regarding inorganic carbon uptake kinetics, the measured maximum short-term uptake rates (Vmax(CO2)) and apparent half-saturation constants (K1/2(CO2)) did not differ between offshore and inshore phytoplankton. Moreover, Vmax(CO2) and K1/2(CO2) did not exhibit any CO2-dependent trend over the natural pCO2 range from 237 to 507 µatm. K1/2(CO2) strongly varied among the sampled phytoplankton communities, ranging between 3.5 and 35.3 µmol/L CO2. While in many of the sampled phytoplankton communities, the operation of carbon-concentrating mechanisms (CCMs) was indicated by low K1/2(CO2) values relative to ambient CO2 concentrations, some coastal sites exhibited higher values, suggesting down-regulated CCMs. Overall, our results demonstrate a complex interplay between photophysiological processes, iron and carbon uptake of phytoplankton communities of the WAP and the Drake Passage.
    Keywords: AWI_PhyOce; Physical Oceanography @ AWI
    Type: dataset publication series
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Pausch, Franziska; Bischof, Kai; Trimborn, Scarlett; Jesus, Bruno (2019): Iron and manganese co-limit growth of the Southern Ocean diatom Chaetoceros debilis. PLoS ONE, 14(9), e0221959, https://doi.org/10.1371/journal.pone.0221959
    Publication Date: 2024-07-19
    Description: In some parts of the Southern Ocean (SO), even though low surface concentrations of iron (Fe) and manganese (Mn) indicate FeMn co-limitation, we still lack an understanding on how Mn and Fe availability influences SO phytoplankton ecophysiology. Therefore, this study investigated the effects of Fe and Mn limitation alone as well as their combination on growth, photophysiology and particulate organic carbon production of the bloom-forming Antarctic diatom Chaetoceros debilis. Our results clearly show that growth, photochemical efficiency and carbon production of C. debilis were co-limited by Fe and Mn as highest values were only reached when both nutrients were provided. Even though Mn-deficient cells had higher photochemical efficiencies than Fe-limited ones, they, however, displayed similar low growth and POC production rates, indicating that Mn limitation alone drastically impeded the cell's performance. These results demonstrate that similar to low Fe concentrations, low Mn availability inhibits growth and carbon production of C. debilis. As a result from different species-specific trace metal requirements, SO phytoplankton species distribution and productivity may therefore not solely depend on the input of Fe alone, but also critically on Mn acting together as important drivers of SO phytoplankton ecology and biogeochemistry.
    Keywords: Carbon, organic, particulate, per cell; Carbon, organic, particulate, production per cell; Carbon/Nitrogen ratio; Carbon/Nitrogen ratio, standard deviation; co-limitation; Diatom; Electron transport rate, absolute; Electron transport rate, absolute, standard deviation; Fe; Functional absorption cross sections of photosystem II reaction centers; Functional absorption cross sections of photosystem II reaction centers, standard deviation; growth; Growth rate, standard deviation; Irradiance; Maximum photochemical quantum yield of photosystem II; Maximum photochemical quantum yield of photosystem II, standard deviation; Mn; Particulate organic carbon, production, standard deviation; Particulate organic carbon content per cell, standard deviation; Photosynthesis; Phytoplankton growth rate; Species; trace metals; Treatment; Type
    Type: dataset
    Format: text/tab-separated-values, 234 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Ksionzek, Kerstin B; Zhang, Jing; Ludwichowski, Kai-Uwe; Wilhelms-Dick, Dorothee; Trimborn, Scarlett; Jendrossek, Thomas; Kattner, Gerhard; Koch, Boris P (2018): Stoichiometry, polarity, and organometallics in solid-phase extracted dissolved organic matter of the Elbe-Weser estuary. PLoS ONE, 13(9), e0203260, https://doi.org/10.1371/journal.pone.0203260
    Publication Date: 2024-07-19
    Description: Water samples were either acidified to pH 2 or processed without acidification (pH 8) prior solid-phase extraction (SPE). SPE was performed in quadruplicates. Thus, the given concentrations and elemental ratios of solid-phase extracts are average values of quadruplicate measurements (+/- standard deviation). Some values for SPE-V and SPE-As were below limit of detection (LOD).
    Keywords: Arsenic, extracted; Arsenic, extracted, standard deviation; BOT; Bottle, unknown; Carbon, organic, dissolved; Carbon, organic, dissolved, extracted; Carbon, organic, dissolved, extracted, standard deviation; Carbon/Arsenic ratio; Carbon/Arsenic ratio, standard deviation; Carbon/Chromium ratio; Carbon/Chromium ratio, standard deviation; Carbon/Cobalt ratio; Carbon/Cobalt ratio, standard deviation; Carbon/Copper ratio; Carbon/Copper ratio, standard deviation; Carbon/Nickel ratio; Carbon/Nickel ratio, standard deviation; Carbon/Nitrogen ratio; Carbon/Nitrogen ratio, standard deviation; Carbon/Phosphorus ratio; Carbon/Phosphorus ratio, standard deviation; Carbon/sulfur ratio; Carbon/sulfur ratio, standard deviation; Carbon/Vanadium ratio; Carbon/Vanadium ratio, standard deviation; Chromium, extracted; Chromium, extracted, standard deviation; Cobalt; Cobalt, extracted; Cobalt, extracted, standard deviation; Copper; Copper, extracted; Copper, extracted, standard deviation; CTD/Rosette; CTD-RO; Date/Time of event; DEPTH, water; E1; Elbe_E1; Elbe Estuary; Event label; HE426; HE426/17-1; HE426/19-1; HE426/30-1; Heincke; ICP-MS, Elemental Scientific, seaFAST; Latitude of event; Longitude of event; Nickel, extracted; Nickel, extracted, standard deviation; Nitrogen, organic, dissolved, extracted; Nitrogen, organic, dissolved, extracted, standard deviation; Nitrogen, total dissolved; North Sea; pH; Phosphorus, organic, dissolved, extracted, standard deviation; Phosphorus, organic, extracted, dissolved; Salinity; Solid phase extraction (SPE); followed by High temperature catalytic oxidation (HTCO); Solid phase extraction (SPE) followed by ICP-MS; Station label; Sulfur, organic, dissolved, extracted; Sulfur, organic, dissolved, extracted, standard deviation; Vanadium, extracted; Vanadium, extracted, standard deviation; W1; W2; Weser_W1; Weser_W2; Weser, Germany, Europe
    Type: dataset
    Format: text/tab-separated-values, 526 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Hoppe, Clara Jule Marie; Holtz, Lena-Maria; Trimborn, Scarlett; Rost, Björn (2015): Ocean acidification decreases the light-use efficiency in an Antarctic diatom under dynamic but not constant light. New Phytologist, 207(1), 159-171, https://doi.org/10.1111/nph.13334
    Publication Date: 2024-07-19
    Description: There is increasing evidence that different light intensities strongly modulate the effects of ocean acidification (OA) on marine phytoplankton. The aim of the present study was to investigate interactive effects of OA and dynamic light, mimicking natural mixing regimes. The Antarctic diatom Chaetoceros debilis was grown under two pCO2 (390 and 1000 latm) and light conditions (constant and dynamic), the latter yielding the same integrated irradiance over the day. To characterize interactive effects between treatments, growth, elemental composition, primary production and photophysiology were investigated. Dynamic light reduced growth and strongly altered the effects of OA on primary production, being unaffected by elevated pCO2 under constant light, yet significantly reduced under dynamic light. Interactive effects between OA and light were also observed for Chl production and particulate organic carbon (POC) quotas. Response patterns can be explained by changes in the cellular energetic balance. While the energy transfer efficiency from photochemistry to biomass production (Phi_e,C) was not affected by OA under constant light, it was drastically reduced under dynamic light. Contrasting responses under different light conditions need to be considered when making predictions regarding a more stratified and acidified future ocean.
    Type: dataset
    Format: application/vnd.openxmlformats-officedocument.spreadsheetml.sheet, 48.3 kBytes
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Trimborn, Scarlett; Thoms, Silke; Karitter, Pascal; Bischof, Kai (2019): Ocean acidification and high irradiance stimulate growth of the Antarctic cryptophyte Geminigera cryophila. Biogeosciences, 16, 2997–3008, https://doi.org/10.5194/bg-2019-97
    Publication Date: 2024-07-19
    Description: Ecophysiological studies on Antarctic cryptophytes to assess whether climatic changes such as ocean acidification and enhanced stratification affect their growth in Antarctic coastal waters in the future are lacking so far. This is the first study that investigates the combined effects of the increasing availability of pCO2 (400 and 1000 μatm) and irradiance (20, 200 and 500 μmol photons m-2 s-1) on growth, elemental composition and photo-physiology of the Antarctic cryptophyte Geminigera cryophila. Under ambient pCO2, this species was characterized by a pronounced sensitivity to increasing irradiance with complete growth inhibition at the highest light intensity. Interestingly, when grown under high pCO2 this negative light effect vanished, and it reached the highest rates of growth and particulate organic carbon production at the highest irradiance compared to the other tested experimental conditions. Our results for G. cryophila reveal beneficial effects of ocean acidification in conjunction with enhanced irradiance on growth and photosynthesis. Hence, cryptophytes such as G. cryophila may be potential winners of climate change, potentially thriving better in more stratified and acidic coastal waters and contributing in higher abundance to future phytoplankton assemblages of coastal Antarctic waters.
    Keywords: Carbon, organic, particulate, per cell; Carbon, organic, particulate, production per cell; Carbon, organic, particulate, standard deviation; Carbon/Nitrogen ratio; Carbon/Nitrogen ratio, standard deviation; Connectivity between photosystem II; Connectivity between photosystem II, standard deviation; cryptophytes; Electron transport rate, absolute; Electron transport rate, absolute, standard deviation; Functional absorption cross sections of photosystem II reaction centers; Functional absorption cross sections of photosystem II reaction centers, standard deviation; Functional photosystem II reaction centers, per cell; Functional photosystem II reaction centers, standard deviation; Growth rate, standard deviation; irradiance; Irradiance; Maximum photochemical quantum yield of photosystem II; Maximum photochemical quantum yield of photosystem II, standard deviation; Nitrogen, organic, particulate, per cell; Nitrogen, organic, particulate, per cell, standard deviation; Non photochemical quenching; Non photochemical quenching, standard deviation; Ocean acidification; Particulate organic carbon, production, standard deviation; Particulate organic nitrogen production, standard deviation; Phytoplankton growth rate; Production of particulate organic nitrogen; Recovery; Registration number of species; Re-oxidation time of the Qa acceptor; Re-oxidation time of the Qa acceptor, standard deviation; Southern Ocean; Species; Standard deviation; Treatment: light intensity; Treatment: partial pressure of carbon dioxide; Type; Uniform resource locator/link to reference
    Type: dataset
    Format: text/tab-separated-values, 640 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Trimborn, Scarlett; Thoms, Silke; Brenneis, Tina; Heiden, Jasmin; Beszteri, Sara; Bischof, Kai (2017): Two Southern Ocean diatoms are more sensitive to ocean acidification and changes in irradiance than the prymnesiophyte Phaeocystis antarctica. Physiologia Plantarum, https://doi.org/10.1111/ppl.12539
    Publication Date: 2024-07-19
    Description: To better understand the impact of ocean acidification (OA) and changes in light availability on Southern Ocean phytoplankton physiology, we investigated the effects of pCO2 (380 and 800 µatm) in combination with low and high irradiance (20 or 50 and 200 µmol photons/m2/s) on growth, particulate organic carbon (POC) fixation and photophysiology in the three ecologically relevant species Chaetoceros debilis, Fragilariopsis kerguelensis and Phaeocystis antarctica. Irrespective of the light scenario, neither growth nor POC per cell was stimulated by OA in any of the tested species and the two diatoms even displayed negative responses in growth (e.g. C. debilis) or POC content (e.g. F. kerguelensis) under OA in conjunction with high light. For both diatoms, also maximum quantum yields of PSII (Fv/Fm) were decreased under these conditions, indicating lowered photochemical efficiencies. To counteract the negative effects by OA and high light, the two diatoms showed diverging photoacclimation strategies. While cellular chlorophyll a and fucoxanthin contents were enhanced in C. debilis to potentially maximize light absorption, F. kerguelensis exhibited reduced chlorophyll a per cell, increased disconnection of antennae from photosystem II reaction centers and strongly lowered absolute electron transport rates (ETR). The decline in ETRs in F. kerguelensis might be explained in terms of different species-specific strategies for tuning the available flux of adenosine triphosphate and nicotinamide adenine dinucleotide phosphate. Overall, our results revealed that P. antarctica was more tolerant to OA and changes in irradiance than the two diatoms, which may have important implications for biogeochemical cycling.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Antarctic; Aragonite saturation state; Bicarbonate ion; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbon, organic, particulate, per cell; Carbon, organic, particulate, standard deviation; Carbon/Nitrogen ratio; Carbon/Nitrogen ratio, standard deviation; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, standard deviation; Chaetoceros debilis; Chromista; Electron transport rate; Electron transport rate, standard deviation; Fragilariopsis kerguelensis; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Growth rate; Growth rate, standard deviation; Haptophyta; Irradiance; Laboratory experiment; Maximum photochemical quantum yield of photosystem II; Maximum photochemical quantum yield of photosystem II, standard deviation; Non photochemical quenching; Non photochemical quenching, standard deviation; OA-ICC; Ocean Acidification International Coordination Centre; Ochrophyta; Open ocean; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, standard deviation; Phaeocystis antarctica; Phytoplankton; Polar; Primary production/Photosynthesis; Registration number of species; Salinity; Single species; Species; Temperature, water; Treatment; Type; Uniform resource locator/link to reference; Yield; Yield, standard deviation
    Type: dataset
    Format: text/tab-separated-values, 7396 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Trimborn, Scarlett; Brenneis, Tina; Hoppe, Clara Jule Marie; Laglera, Luis Miguel; Norman, Louiza; Santos-Echeandía, Juan; Völkner, Christian; Wolf-Gladrow, Dieter A; Hassler, Christel S (2017): Iron sources alter the response of Southern Ocean phytoplankton to ocean acidification. Marine Ecology Progress Series, 578, 35-50, https://doi.org/10.3354/meps12250
    Publication Date: 2024-07-22
    Description: The rise in anthropogenic CO2 and the associated ocean acidification (OA) will change trace metal solubility and speciation, potentially altering Southern Ocean (SO) phytoplankton productivity and species composition. As iron (Fe) sources are important determinants of Fe bioavailability, we assessed the effect of Fe-laden dust versus inorganic Fe (FeCl3) enrichment under ambient and high pCO2 levels (390 and 900 μatm) in a naturally Fe-limited SO phytoplankton community. Despite similar Fe chemical speciation and net particulate organic carbon (POC) production rates, CO2-dependent species shifts were controlled by Fe sources. Final phytoplankton communities of both control and dust treatments were dominated by the same species, with an OA-dependent shift from the diatom Pseudo nitzschia prolongatoides towards the prymnesiophyte Phaeocystis antarctica. Addition of FeCl3 resulted in high abundances of Nitzschia lecointei and Chaetoceros neogracilis under ambient and high pCO2, respectively. These findings reveal that both the characterization of the phytoplankton community at the species level and the use of natural Fe sources are essential for a realistic projection of the biological carbon pump in the Fe-limited pelagic SO under OA. As dust deposition represents a more realistic scenario for the Fe-limited pelagic SO under OA, unaffected net POC production and dominance of P. antarctica can potentially weaken the export of carbon and silica in the future.
    Keywords: Abundance; Abundance, standard deviation; Alkalinity, total; Alkalinity, total, standard deviation; Antarctic; Aragonite saturation state; Bicarbonate ion; Biogenic particulate silica/Carbon, organic, particulate; Biogenic particulate silica/Carbon, organic, particulate, standard deviation; Biomass/Abundance/Elemental composition; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbon, organic, particulate, net production; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cell density; Cell density, standard deviation; Community composition and diversity; Entire community; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth rate; Growth rate, standard deviation; Iron, chemically labile; Iron, dissolved; Iron, dissolved, inorganic; Iron, dissolved, standard deviation; Iron, inorganic, conditional stability constants; Iron, inorganic, conditional stability constants, standard deviation; Iron uptake/Carbon, organic, particulate; Iron uptake/Carbon, organic, particulate, standard deviation; Laboratory experiment; Ligand concentration; Ligand concentration, standard deviation; Maximum photochemical quantum yield of photosystem II; Maximum photochemical quantum yield of photosystem II, standard deviation; Micro-nutrients; Nitrate; Nitrate, standard deviation; OA-ICC; Ocean Acidification International Coordination Centre; Open ocean; Other metabolic rates; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Particulate inorganic carbon per cell; Pelagos; pH; pH, standard deviation; Polar; Polar_front; Primary production/Photosynthesis; Salinity; Side coefficient of dissolved Fe-complex ligands; Temperature, water; Time in days; Time point, descriptive; Treatment; Type
    Type: dataset
    Format: text/tab-separated-values, 4906 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-07-31
    Keywords: ANT-XXVIII/3; Area/locality; CTD/Rosette; CTD-RO; Date/Time of event; DEPTH, water; Elevation of event; Event label; Latitude of event; Longitude of event; Nitrate; Phosphate; Polarstern; PS79; PS79/087-2; PS79/088-1; PS79/092-1; PS79/093-1; PS79/095-3; PS79/096-1; PS79/101-1; PS79/102-1; PS79/103-1; PS79/104-1; PS79/105-1; PS79/106-1; PS79/107-1; PS79/108-1; PS79/109-1; PS79/110-1; PS79/111-1; PS79/112-1; PS79/114-2; PS79/115-1; PS79/116-1; PS79/117-1; PS79/118-1; PS79/119-3; PS79/120-1; PS79/121-1; PS79/122-2; PS79/123-1; PS79/124-1; PS79/125-1; PS79/126-1; PS79/127-2; PS79/128-10; PS79/137-7; PS79/144-2; PS79/145-1; PS79/146-1; PS79/147-1; PS79/148-1; PS79/149-1; PS79/150-1; PS79/151-1; PS79/152-1; PS79/153-1; PS79/154-1; PS79/155-1; PS79/156-1; PS79/157-1; PS79/158-1; PS79/159-1; PS79/160-1; PS79/161-1; PS79/162-2; PS79/163-1; PS79/164-1; Silicate; South Atlantic Ocean
    Type: dataset
    Format: text/tab-separated-values, 2589 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-07-31
    Keywords: ANT-XXVIII/3; Area/locality; Chlorophyll a, areal concentration; CTD/Rosette; CTD-RO; Date/Time of event; DEPTH, water; Elevation of event; Event label; Latitude of event; Longitude of event; Mixed layer depth; Photosynthetic efficiency normalized to chlorophyll a biomass; Polarstern; Primary production, integrated; PS79; PS79/085-3; PS79/086-2; PS79/091-5; PS79/114-2; PS79/128-10; PS79/136-8; PS79/137-7; PS79/138-2; PS79/139-3; PS79/140-12; PS79/147-1; PS79/149-1; PS79/155-1; PS79/160-1; PS79/165-5; PS79/168-1; PS79/169-1; PS79/170-1; PS79/174-9; PS79/175-1; Radiation, photosynthetically active; South Atlantic Ocean
    Type: dataset
    Format: text/tab-separated-values, 116 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-07-31
    Keywords: ANT-XXVIII/3; Area/locality; CTD/Rosette; CTD-RO; Date/Time of event; DEPTH, water; Elevation of event; Event label; Latitude of event; Longitude of event; Nitrate; Nitrate/Phosphate deficit ratio; Nitrate deficit, integrated; Phosphate; Phosphate deficit, integrated; Polarstern; PS79; PS79/085-3; PS79/086-2; PS79/087-2; PS79/088-1; PS79/092-1; PS79/093-1; PS79/095-3; PS79/096-1; PS79/101-1; PS79/102-1; PS79/103-1; PS79/104-1; PS79/105-1; PS79/106-1; PS79/107-1; PS79/108-1; PS79/109-1; PS79/110-1; PS79/111-1; PS79/112-1; PS79/114-2; PS79/115-1; PS79/116-1; PS79/117-1; PS79/118-1; PS79/119-3; PS79/120-1; PS79/121-1; PS79/122-2; PS79/123-1; PS79/124-1; PS79/125-1; PS79/126-1; PS79/127-2; PS79/128-10; PS79/137-7; PS79/144-2; PS79/145-1; PS79/146-1; PS79/147-1; PS79/148-1; PS79/149-1; PS79/150-1; PS79/151-1; PS79/152-1; PS79/153-1; PS79/154-1; PS79/155-1; PS79/156-1; PS79/157-1; PS79/158-1; PS79/159-1; PS79/160-1; PS79/161-1; PS79/162-2; PS79/163-1; PS79/164-1; PS79/165-5; PS79/166-1; PS79/167-1; PS79/168-1; PS79/169-1; PS79/170-1; PS79/171-1; PS79/172-1; PS79/173-1; Silicate; Silicate/Nitrate deficite ratio; Silicate deficit, integrated; South Atlantic Ocean
    Type: dataset
    Format: text/tab-separated-values, 580 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...