GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-02-08
    Description: Molybdenum (Mo) concentrations and isotope compositions in sediments and shales are commonly used as proxies for anoxic and sulfidic (i.e., euxinic) conditions in the water column of paleo-marine systems. A basic assumption underlying this practice is that the proxy signal extracted from the geological record is controlled by long-term (order of decades to millennia) Mo scavenging in the euxinic water column rather than Mo deposition during brief episodes or events (order of weeks to months). To test whether this assumption is viable we studied the biogeochemical cycling of Mo and its isotopes in sediments of the intermittently euxinic Gotland Deep in the central Baltic Sea. Here, multiannual to decadal periods of euxinia are occasionally interrupted by inflow events during which well‑oxygenated water from the North Sea penetrates into the basin. During these events manganese (Mn) (oxyhydr)oxide minerals are precipitated in the water column, which are known to scavenge Mo. We present sediment and pore water Mo and Mo isotope data for sediment cores which were taken before and after a series of inflow events between 2014 and 2016. After seawater inflow, pore water Mo concentrations in anoxic surface sediments exceed the salinity-normalized concentration by more than two orders of magnitude and coincide with transient peaks of dissolved Mn. A fraction of the Mo liberated into the pore water is transported by diffusion in a downward direction and sequestered by organic matter within the sulfidic zone of the sediment. Diffusive flux calculations as well as a mass balance that is based on the sedimentary Mo isotope composition suggest that about equal proportions of the Mo accumulating in the basin are delivered by Mn (oxyhydr)oxide minerals during inflow events and Mo scavenging with hydrogen sulfide during euxinic periods. Since the anoxic surface sediment where Mo is released from Mn (oxyhydr)oxides are separated by several centimeters from the deeper sulfidic layers where Mo is removed, the solid phase record of Mo concentration and isotope composition would be misinterpreted if steady state Mo accumulation was assumed. Based on our observations in the Gotland Deep, we argue that short-term redox fluctuations need to be considered when interpreting Mo-based paleo-records.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Format: other
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-23
    Description: Dissolved silicon isotope compositions have been analysed for the first time in pore waters (δ30SiPW) of three short sediment cores from the Peruvian margin upwelling region with distinctly different biogenic opal content in order to investigate silicon isotope fractionation behaviour during early diagenetic turnover of biogenic opal in marine sediments. The δ30SiPW varies between +1.1‰ and +1.9‰ with the highest values occurring in the uppermost part close to the sediment–water interface. These values are of the same order or higher than the δ30Si of the biogenic opal extracted from the same sediments (+0.3‰ to +1.2‰) and of the overlying bottom waters (+1.1‰ to +1.5‰). Together with dissolved silicic acid concentrations well below biogenic opal saturation, our collective observations are consistent with the formation of authigenic alumino-silicates from the dissolving biogenic opal. Using a numerical transport-reaction model we find that approximately 24% of the dissolving biogenic opal is re-precipitated in the sediments in the form of these authigenic phases at a relatively low precipitation rate of 56 μmol Si cm−2 yr−1. The fractionation factor between the precipitates and the pore waters is estimated at −2.0‰. Dissolved and solid cation concentrations further indicate that off Peru, where biogenic opal concentrations in the sediments are high, the availability of reactive terrigenous material is the limiting factor for the formation of authigenic alumino-silicate phases.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-02-01
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-11-23
    Description: Highlights: • MIMS used to quantify the dissolved CH4 inventory around a bubble emission site. • Conservative estimate of well 22/4b seabed CH4 emission was 1.8 ktons yr−1. • Stratification impedes immediate CH4 release into the atmosphere. The dissolved methane (CH4) plume rising from the crater of the blowout well 22/4b in the Central North Sea was mapped during stratified water column conditions. Geochemical surveys were conducted close to the seafloor at 80.3 m water depth, below the thermocline (61.1 m), and in the mixed surface layer (13.2 m) using membrane inlet mass spectrometry (MIMS) in combination with a towed CTD. Seawater was continuously transferred from the respective depth levels of the CTD to the MIMS by using an inline submersible pump. Close to the seafloor a well-defined CH4 plume extended from the bubble release site ∼460 m towards the southwest. Along this distance CH4 concentrations decreased from a maximum of 7872 nmol l−1 to less than 250 nmol l−1. Below the thermocline the well-defined CH4 plume shape encountered at the seafloor was distorted and filaments were observed that extended towards the west and southwest in relation to current direction. Where the core of the bubble plume intersected this depth layer, footprints of high CH4 concentrations of up to 17,900 nmol l−1 were observed. In the mixed surface layer the CH4 distribution with a maximum of up to 3654 nmol l−1 was confined to a small patch of ∼60 m in diameter. The determination of the water column CH4 inventories revealed that CH4 transfer across the thermocline was strongly impeded as only ∼3% of the total water column inventory was located in the mixed surface layer. Best estimate of the CH4 seabed release from the blowout was 1751 tons yr−1. The fate of the trapped CH4 (∼97%) that does not immediately reach the atmosphere remains speculative. In wintertime, when the water column becomes well mixed as well as during storm events newly released CH4 and the trapped CH4 pool can be transported rapidly to the sea surface and emitted into the atmosphere.
    Type: Article , PeerReviewed
    Format: text
    Format: video
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-09-23
    Description: Highlights • Review of sediment archives from the Peruvian margin since the LGM. • Focus on the evolutionary feature of the hiatus found in archives. • Modern analogue for current-dominated environments for paleo reconstructions. • New results for erosional potential of the non-linear internal waves (NLIWs). Abstract The Peruvian continental margin is characterized by the presence of one of the strongest and most distinct Oxygen Minimum Zones (OMZs) in today's oceans. Therefore, it has long been in the focus of oceanographic and geological investigations. Observations indicate that OMZs are expanding in relation with currently changing climate. To advance understanding of the temporal evolution of OMZs and climate change, complete paleoceanographic and palaeoclimatological reconstructions are needed. However, the development of paleoenvironmental scenarios for the period since the Last Glacial Maximum at this region was hampered by a ubiquitous hiatus and short-term interruptions of the stratigraphical record. In the present study, we combined the stratigraphical information from 31 sediment cores from the Peruvian margin located between 3 and 18°S and water depths of 90 to 1300 m within and below today's OMZ, in order to determine the extent of the hiatus and assess the responsible mechanisms. A widespread unconformity and related erosional features, omission surfaces and phosphorites, were observed in sediment cores from the area south of 7°S, depicting a prograding feature on the continental slope from south to north during the deglaciation. Combining recent oceanographic and sedimentological observations, it is inferred that, tide-topography interaction and resulting non-linear internal waves (NLIWs) shape the slope by erosion, carry sediments upslope or downslope and leave widespread phosphoritic lag sediments, while the Peru Chile Undercurrent (PCUC) transports the resuspended sediments southward causing non-deposition. This exceptional sedimentary regime makes the Peruvian margin a modern analogue for such environments. Overall, our compilation of downcore records showed that enhanced bottom currents due to tide-topography interaction were progressively evolving and affected a wider area with the onset of the last deglaciation. Elevated tidal amplitudes and variability of mid-depth water masses (i.e.; density changes) and hydrodynamics in relation with changing climate were potential reasons of this evolving feature of erosion and reworking. Additionally, erosion and non-deposition was observed widest and even was encountered on the continental shelf during the early Holocene, potentially indicating a strong phase of the PCUC mirroring today's El Niño-like conditions.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-09-23
    Description: Highlights • Very high rates of dissimilatory nitrate reduction to ammonium by Thioploca. • Non-steady state model predicts Thioploca survival on intracellular nitrate reservoir. • Ammonium release by Thioploca may be coupled to pelagic N loss by anammox. • Thioploca may contribute to anammox long after bottom water nitrate disappearance. • Model indicates that benthic foraminifera account for 90% of benthic N2 production. Abstract Benthic N cycling in the Peruvian oxygen minimum zone (OMZ) was investigated at ten stations along 12oS from the middle shelf (74 m) to the upper slope (1024 m) using in situ flux measurements, sediment biogeochemistry and modelling. Middle shelf sediments were covered by mats of the filamentous bacteria Thioploca spp. and contained a large ‘hidden’ pool of nitrate that was not detectable in the porewater. This was attributed to a biological nitrate reservoir stored within the bacteria to oxidize sulfide to sulfate during ‘dissimilatory nitrate reduction to ammonium’ (DNRA). The extremely high rates of DNRA on the shelf (15.6 mmol m-2 d-1 of N), determined using an empirical steady-state model, could easily supply all the ammonium requirements for anammox in the water column. The model further showed that denitrification by foraminifera may account for 90% of N2 production at the lower edge of the OMZ. At the time of sampling, dissolved oxygen was below detection limit down to 400 m and the water body overlying the shelf had stagnated, resulting in complete depletion of nitrate and nitrite. A decrease in the biological nitrate pool was observed on the shelf during fieldwork concomitant with a rise in porewater sulfide levels in surface sediments to 2 mM. Using a non-steady state model to simulate this natural anoxia experiment, these observations were shown to be consistent with Thioploca surviving on a dwindling intracellular nitrate reservoir to survive the stagnation period. The model shows that sediments hosting Thioploca are able to maintain high ammonium fluxes for many weeks following stagnation, potentially sustaining pelagic N loss by anammox. In contrast, sulfide emissions remain low, reducing the economic risk to the Peruvian fishery by toxic sulfide plume development.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Biogeosciences, 121 (4). pp. 1144-1157.
    Publication Date: 2019-07-16
    Description: The upwelling area off North-West Africa is characterized by high export production, high nitrate and low oxygen concentration in bottom waters. The underlying sediment consists of sands that cover most of the continental shelf. Due to their permeability sands allow for fast advective pore water transport and can exhibit high rates of nitrogen (N) loss via denitrification as reported for anthropogenically eutrophied regions. However, N loss from sands underlying naturally eutrophied waters is not well studied, and in particular, N loss from the North-West African shelf is poorly constrained. During two research cruises in April/May 2010/2011, sediment was sampled along the North-West African shelf and volumetric denitrification rates were measured in sediment layers down to 8 cm depth using slurry incubations with 15N-labeled nitrate. Areal N loss was calculated by integrating volumetric rates down to the nitrate penetration depth derived from pore water profiles. Areal N loss was neither correlated with water depth nor with bottom water concentrations of nitrate and oxygen but was strongly dependent on sediment grain size and permeability. The derived empirical relation between benthic N loss and grains size suggests that pore water advection is an important regulating parameter for benthic denitrification in sands and further allowed extrapolating rates to an area of 53,000 km2 using detailed sediment maps. Denitrification from this region amounts to 995 kt yr-1 (average 3.6 mmol m-2 d-1) which is 4 times higher than previous estimates based on diffusive pore water transport. Sandy sediments cover 50-60% of the continental shelf and thus may contribute significantly to the global benthic N loss.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-09-23
    Description: Highlights • Sulphidic event on the shelf resulted in a temporal imbalance of the benthic N cycle. • Bacterial NOx storage is a major source of oxidative power during euxinia. • Peruvian shelf and upper slope sediments are strong recycling sites of fixed N. Abstract Oxygen minimum zones (OMZ) are key regions for fixed nitrogen loss in both the sediments and the water column. During this study, the benthic contribution to N cycling was investigated at ten sites along a depth transect (74–989 m) across the Peruvian OMZ at 12 °S. O2 levels were below detection limit down to ~ 500 m. Benthic fluxes of N2, NO3–, NO2–, NH4+, H2S and O2 were measured using benthic landers. Flux measurements on the shelf were made under extreme geochemical conditions consisting of a lack of O2, NO3– and NO2– in the bottom water and elevated seafloor sulphide release. These particular conditions were associated with a large imbalance in the benthic nitrogen cycle. The sediments on the shelf were densely covered by filamentous sulphur bacteria Thioploca, and were identified as major recycling sites for DIN releasing high amounts of NH4+up to 21.2 mmol m−2 d−1 that were far in excess of NH4+release by ammonification. This difference was attributed to dissimilatory nitrate (or nitrite) reduction to ammonium (DNRA) that was partly being sustained by NO3– stored within the sulphur oxidizing bacteria. Sediments within the core of the OMZ (ca. 200 to 400 m) also displayed an excess flux of N of 3.5 mmol m−2 d−1 mainly as N2. Benthic nitrogen and sulphur cycling in the Peruvian OMZ appears to be particularly susceptible to bottom water fluctuations in O2, NO3−and NO2−, and may accelerate the onset of pelagic euxinia when NO3−and NO2−become depleted.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-11-08
    Description: Stable isotopes (15,14N, 18,16O) of dissolved inorganic nitrogen (N) were measured in sediment porewaters and benthic flux chambers across the Peruvian oxygen minimum zone (OMZ) from 74 to 1000 m water depth. Sediments at all locations were net consumers of bottom water NO3−. In waters shallower than 400 m, this sink was largely attributed to dissimilatory nitrate reduction to ammonium (DNRA) by filamentous nitrate-storing bacteria (Marithioploca and Beggiatoa) and to denitrification by foraminifera. The apparent N isotope effect of benthic NO3− loss (15εapp) was 7.4 ± 0.7‰ at microbial mat sites and 2.5 ± 0.9‰ at the lower fringe of the OMZ (400 m) where foraminifera were abundant. The OMZ sediments were a source of 15N-enriched NO2− (28.9 to 65.5‰) and NH4+ (19.4–20.5‰) to the bottom water. Model simulations generally support a previous hypothesis attributing the 15NH4+ enrichment to a coupling between DNRA and anammox (termed DAX) using biologically-stored NO3− from Marithioploca and NH4+ from the porewater. The model predicts that 40% of NO3− that is actively transported into the sediment by Marithioploca is reduced to N2 by this pathway. DAX enhances N2 fluxes by a factor of 2–3 and accounts for 70% of fixed N loss to N2. Moreover, because most of the ambient porewater NH4+ is generated by DNRA, up to two-thirds of biologically-transported NO3− could end up being lost to N2. This challenges the premise that Marithioploca-dominated sediments tend to conserve fixed N. By limiting the flux of 15NH4+ back to the ocean, DAX also tends to decrease benthic N fractionation. Tracking the fate of NH4+ once it leaves the sediment is critical for understanding how the benthos contributes to N isotope signals in the water column.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-01-31
    Description: Highlights • next to organic matter degradation, bioirrigation and bottom water percolation through permeable surface sediments enhances benthic TPO43- and Fe2+ release • changes in bottom water oxygenation induce slight changes benthic TPO43- and Fe2+ release rates measured in 2011 and 2014 • deoxygenation experiments imply enhanced TPO43- and Fe2+ release at ongoing deoxygenation in the Mauritanian OMZ Abstract Benthic fluxes of total dissolved phosphate (TPO43-), dissolved iron (Fe2+), and dissolved inorganic carbon (DIC) were determined in situ using benthic chambers at nine stations along a depth transect between 47 and 1108 m water depth at 18 °N off Mauritania (NW Africa) during the upwelling season in 2014 (RV Meteor cruise M107). Bottom water oxygen (O2) concentrations were always ≥ 25 µM, and all fluxes (TPO43-, Fe2+, DIC) were consistently directed from the sediments into the bottom water. The highest benthic TPO43- release of 0.2 ± 0.07 mmol m2 d-1 was found at 47 m water depth (50 µM O2). The highest diffusive Fe2+ flux of 0.03 mmol m2 d-1, determined from porewater Fe2+ concentrations, occurred at 67 m water depth (27 µM O2). This was much lower than the detrital Fe supply as indicated by constant Fe/Al ratios along the depth transect. TPO43- release rates decreased concurrently with DIC flux and water depth. A difference of up to one order of magnitude between benthic chamber and diffusive TPO43- fluxes indicated that the total TPO43- release was strongly enhanced by bioirrigation. The observed fluxes were similar to those measured during an earlier cruise in 2011, generally indicating comparable release rates during both upwelling seasons. Furthermore, ex situ oxygen manipulation experiments showed an increase of the nutrient release (e.g. TPO43-, Fe2+) after seven days of anoxic bottom water conditions. The fluxes were enhanced by a factor of 1.4 for P and 7.3 for Fe compared to the measured release under natural conditions and reached values as high as those measured in the anoxic oxygen minimum zone off Peru. Our observations support the hypothesis that increasing deoxygenation of the oceans will likely enhance sedimentary TPO43- and Fe2+ release and thus contribute to a positive feedback mechanism with increasing nutrient levels and increased ocean productivity.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...