GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (160)
  • 1995-1999  (71)
Keywords
Language
Years
Year
  • 1
    Keywords: Copepoda Physiology ; Lipids Metabolism ; Hochschulschrift ; Forschungsbericht ; Antarktis ; Ökosystem ; Antarktis ; Ruderfußkrebse ; Lipidstoffwechselstörung
    Type of Medium: Book
    Pages: X, 135 S. , graph. Darst., Kt.
    Series Statement: Berichte zur Polarforschung 157
    DDC: 572/.5741534/09167
    RVK:
    RVK:
    Language: German
    Note: Zsfassung in dt. und engl. Sprache , Zugl.: Bremen, Univ., Diss., 1994
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-02-01
    Description: Time-series studies of arctic marine ecosystems are rare. This is not surprising since polar regions are largely only accessible by means of expensive modern infrastructure and instrumentation. In 1999, the Alfred Wegener Institute, Helmholtz-Centre for Polar and Marine Research (AWI) established the LTER (Long-Term Ecological Research) observatory HAUSGARTEN crossing the Fram Strait at about 79° N. Multidisciplinary investigations covering all parts of the open-ocean ecosystem are carried out at a total of 21 permanent sampling sites in water depths ranging between 250 and 5500 m. From the outset, repeated sampling in the water column and at the deep seafloor during regular expeditions in summer months was complemented by continuous year-round sampling and sensing using autonomous instruments in anchored devices (i.e., moorings and free-falling systems). The central HAUSGARTEN station at 2500 m water depth in the eastern Fram Strait serves as an experimental area for unique biological in situ experiments at the seafloor, simulating various scenarios in changing environmental settings. Long-term ecological research at the HAUSGARTEN observatory revealed a number of interesting temporal trends in numerous biological variables from the pelagic system to the deep seafloor. Contrary to common intuition, the entire ecosystem responded exceptionally fast to environmental changes in the upper water column. Major variations were associated with a Warm-Water-Anomaly evident in surface waters in eastern parts of the Fram Strait between 2005 and 2008. However, even after 15 years of intense time-series work at HAUSGARTEN, we cannot yet predict with complete certainty whether these trends indicate lasting alterations due to anthropologically-induced global environmental changes of the system, or whether they reflect natural variability on multiyear time-scales, for example, in relation to decadal oscillatory atmospheric processes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-02-06
    Description: Coinciding with global warming, Arctic sea ice has rapidly decreased during the last four decades and climate scenarios suggest that sea ice may completely disappear during summer within the next about 50–100 years. Here we produce Arctic sea ice biomarker proxy records for the penultimate glacial (Marine Isotope Stage 6) and the subsequent last interglacial (Marine Isotope Stage 5e). The latter is a time interval when the high latitudes were significantly warmer than today. We document that even under such warmer climate conditions, sea ice existed in the central Arctic Ocean during summer, whereas sea ice was significantly reduced along the Barents Sea continental margin influenced by Atlantic Water inflow. Our proxy reconstruction of the last interglacial sea ice cover is supported by climate simulations, although some proxy data/model inconsistencies still exist. During late Marine Isotope Stage 6, polynya-type conditions occurred off the major ice sheets along the northern Barents and East Siberian continental margins, contradicting a giant Marine Isotope Stage 6 ice shelf that covered the entire Arctic Ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-09-23
    Description: Sediment proxy data from the Norwegian, Greenland, and Iceland seas (Nordic seas) are presented to evaluate surface water temperature (SST) differences between Holocene and Eemian times and to deduce from these data the particular mode of surface water circulation. Records from planktic foraminiferal assemblages, CaCO3 content, oxygen isotopes of foraminifera, and iceberg-rafted debris form the main basis of interpretation. All results indicate for the Eemian comparatively cooler northern Nordic seas than for the Holocene due to a reduction in the northwardly flow of Atlantic surface water towards Fram Strait and the Arctic Ocean. Therefore, the cold polar water flow from the Arctic Ocean was less influencial in the southwestern Nordic seas during this time. As can be further deduced from the Eemian data, slightly higher Eemian SSTs are interpreted for the western Iceland Sea compared to the Norwegian Sea (ca. south of 70°N). This Eemian situation is in contrast to the Holocene when the main mass of warmest Atlantic surface water flows along the Norwegian continental margin northwards and into the Arctic Ocean. Thus, a moderate northwardly decrease in SST is observed in the eastern Nordic seas for this time, causing a meridional transfer in ocean heat. Due to this distribution in SSTs the Holocene is dominated by a meridional circulation pattern. The interpretation of the Eemian data imply a dominantly zonal surface water circulation with a steep meridional gradient in SSTs.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-09-23
    Description: Due to its strong influence on heat and moisture exchange between the ocean and the atmosphere, sea ice is an essential component of the global climate system. In the context of its alarming decrease in terms of concentration, thickness and duration, understanding the processes controlling sea-ice variability and reconstructing paleo-sea-ice extent in polar regions have become of great interest for the scientific community. In this study, for the first time, IP25, a recently developed biomarker sea-ice proxy, was used for a high-resolution reconstruction of the sea-ice extent and its variability in the western North Pacific and western Bering Sea during the past 18,000 years. To identify mechanisms controlling the sea-ice variability, IP25 data were associated with published sea-surface temperature as well as diatom and biogenic opal data. The results indicate that a seasonal sea-ice cover existed during cold periods (Heinrich Stadial 1 and Younger Dryas), whereas during warmer intervals (Bolling-Allerod and Holocene) reduced sea ice or ice-free conditions prevailed in the study area. The variability in sea-ice extent seems to be linked to climate anomalies and sea-level changes controlling the oceanographic circulation between the subarctic Pacific and the Bering Sea, especially the Alaskan Stream injection though the Aleutian passes.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-02-08
    Description: The Kara Sea is an important area for paleo-climatic research since sea ice and brine formation take place on its shelf—two processes inducing supra-regional climatic implications and thereby connecting regional environmental variability with global climatic conditions. To gain information about past sea ice coverage and variations, three sediment cores distributed in the southern and central parts of the marginal Sea were investigated. By applying the sea ice biomarker IP25 and the PIP25 index [phytoplankton biomarker (dinosterol)-IP25 index] post-glacial sea ice variability could be detected in the central Kara Sea (Core BP00-36/4), with most intense sea ice cover between 12.4 and 11.8 ka coinciding with the Younger Dryas (12.9–11.6 ka), and reduced sea ice cover between 10 and 8 ka during the Holocene Thermal Maximum. During the last ~ 7 ka, increasing sea ice indicators might indicate a Holocene cooling trend, probably induced by declining summer insolation. Furthermore, temporal changes in the fast ice—polynya distribution in the southern Kara Sea were detected: expanding fast ice during the late Holocene and a cyclic short-term Holocene climate variability documented by abrupt changes in the sea ice coverage at the BP00-07/7 core site. Core BP99-04/7 from the Yenisei estuary recorded consistently seasonal sea ice cover since ~ 9.3 ka, apart from five short phases of fast ice expansion to the core site. The strong influence of river run-off as well as estuary processes might prevent the detection of (short-term) climatic signals at this study site.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-06-18
    Description: Investigating past interglacial climates not only help to understand how the climate system operates in general, it also forms a vital basis for climate predictions. We reconstructed vertical stratification changes in temperature and salinity in the North Atlantic for a period some 400 ka ago (MIS11), an interglacial time analogue of a future climate. As inferred from a unique set of biogeochemical, geochemical, and faunal data, the internal upper ocean stratification across MIS 11 shows distinct depth-dependent dynamical changes related to vertical as well as lateral shifts in the upper Atlantic meridional circulation system. Importantly, transient cold events are recognized near the end of the long phase of postglacial warming at surface, subsurface, mid, and deeper water layers. These data demonstrate that MIS 11 coolings over the North Atlantic were initially triggered by freshwater input at the surface and expansion of cold polar waters into the Subpolar Gyre. The cooling signal was then transmitted downwards into mid-water depths. Since the cold events occurred after the main deglacial phase we suggest that their cause might be related to continuous melting of the Greenland ice sheet, a mechanism that might also be relevant for the present and upcoming climate.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Alfred-Wegener-Institut für Polar- und Meeresforschung
    In:  In: ARCTIC '98: The Expedition ARK-XIV/1a of RV Polarstern in 1998. , ed. by Jokat, W. Berichte zur Polarforschung = Reports on Polar Research, 308 . Alfred-Wegener-Institut für Polar- und Meeresforschung, Bremerhaven, pp. 30-75.
    Publication Date: 2019-09-23
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-03-25
    Description: The recent dramatic decline of Arctic sea over the last decades and its controlling processes are still poorly understood. In order to distinguish between natural and anthropogenic processes controlling these changes in sea ice, we have to look back to the past beyond the times of direct measurements. For this purpose, we carried out a multi-proxy approach combining organic-geochemical data (bulk parameters: C/N, TOC, δ13Corg; biomarkers: IP25, sterols, GDGTs) with sedimentological data (core lithology, physical properties, IRD counting, XRF scanning) determined in sediments of Yermak Plateau Core PS92/039-2. This core is situated close to the modern summer ice edge and thus very sensitive for environmental changes. Based on magnetostratigraphy and correlations with dated sediment cores, this core represents the time span from MIS 6 to 1 (ca. 180,000 years) and allows the reconstruction of sea ice variability and related changes in oceanic circulation patterns and the Svalbard Barents Ice Sheet (SBIS) fluctuations during glacial/interglacial changes. As sea ice and phytoplankton biomarkers occur throughout the entire sedimentary section but show some strong variability, a more seasonal sea ice cover was probably predominant during the entire time interval, superimposed by a distinct short-term variability in extent. Significant fluctuations in most of our proxy records indicate highly variable sea ice conditions over the Yermak Plateau during MIS 6. Based on our biomarker data, the SBIS could not have reached the Yermak Plateau during MIS 6. During MIS 4 and 2, coevally elevated concentrations of the sea ice proxy IP25 and the biomarkers for phytoplankton productivity and terrigenous input point to a stationary ice margin above the core position at that time. Strengthened Atlantic Water inflow possibly coupled with katabatic winds from the protruding SBIS may have created this stable ice edge situation and the related sedimentary regime.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-11-16
    Description: The Holocene is characterized by the late Holocene cooling trend as well as by internal short-term centennial fluctuations. Because Arctic sea ice acts as a significant component (amplifier) within the climate system, investigating its past long- and short-term variability and controlling processes is beneficial for future climate predictions. This study presents the first biomarker-based (IP25 and PIP25) sea ice reconstruction from the Kara Sea (core BP00-07/7), covering the last 8 ka. These biomarker proxies reflect conspicuous short-term sea ice variability during the last 6.5 ka that is identified unprecedentedly in the source region of Arctic sea ice by means of a direct sea ice indicator. Prominent peaks of extensive sea ice cover occurred at ~3, ~2, ~1.3 and ~0.3 ka. Spectral analysis of the IP25 record revealed ~400- and ~950-year cycles. These periodicities may be related to the Arctic/North Atlantic Oscillation, but probably also to internal climate system fluctuations. This demonstrates that sea ice belongs to a complex system that more likely depends on multiple internal forcing.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...