GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Keywords
Language
  • 1
    Online Resource
    Online Resource
    Stuttgart :Schweizerbart Textbooks,
    Keywords: Evolution (Biology). ; Invertebrates, Fossil. ; Paleontology. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (329 pages)
    Edition: 6th ed.
    ISBN: 9783510655083
    DDC: 575
    Language: German
    Note: Intro -- Allgemeine Paläontologie -- Vorwort -- Inhalt -- 1. Einführung -- 1.1. Von der Fossilienkunde zur Paläontologie -- 1.2. Arbeitsgebiete der Paläontologie -- 2. Gliederung des Organismenreiches -- 2.1. Domäne Bacteria (gr. „Stäbchen") -- 2.2. Domäne Archaea (gr. „uralt", „ursprünglich") -- 2.3. Domäne Eukaryota (gr. „echt", „Kern") -- Übergruppe Excavata (lat. „aus", „gehöhlt") -- Übergruppe SAR (Stramenopila, Alveolata und Rhizaria) -- Stramenopila (gr. „Stroh", „Haar") -- Diatomea (gr. „halbiert", Kieselalgen) -- Silicoflagellata (lat. „hartes Gestein", „Geißel", Kieselgeißler) -- Alveolata (lat. „Mulde") -- Acritarcha (gr. „unsicher", „Herkunft") -- Dinoflagellata (Panzergeißler -- gr. „wirbeln", „Geißel") -- Calpionellida (gr. „Wasserkrug") -- Rhizaria (gr. „Wurzel") -- Foraminifera (Lochschalenträger) -- Radiolaria (lat. „kleiner Strahl", Strahlentierchen) -- Haptophyta (gr. „greifen, fassen", „Pflanzen") -- Coccolithophyceae (gr. „Beere, Frucht", lat. „Stein") -- Übergruppe Archaeplastida (gr. „alt", „gestaltet") -- Rhodophyta (gr. „rot", „Pflanzen") -- Chloroplastida (grüne Pflanzen) -- Chlorophyta (Grünalgen) -- Streptophyta (gr. „gedreht", „Pflanzen") -- Charophyceae (Armleuchteralgen) -- Embryophyta (Höhere Landpflanzen) -- Übergruppe Amoebozoa (Wechseltierchen) -- Übergruppe Opisthokonta (gr. „Hinterpolige") -- Fungi (Pilze) -- Metazoa (vielzellige Tiere) -- 3. Entwicklung des Lebens -- 3.1. Entstehung des Lebens -- 3.2. Frühes Leben (3,7-2,5 Mrd. Jahre) -- 3.3. Die Sauerstoffrevolution (2,5-2,0 Mrd. Jahre) -- 3.4. Einzelliges eukaryotes Leben -- 3.5. Vielzelliges eukaryotes Leben -- 3.6. Die Lebewelt des Phanerozoikums -- Die kambrische Radiation (541-485 Mio. Jahre) -- Das Ordovizium (485-445 Mio. Jahre) -- Marine Mikroorganismen -- Marine Invertebraten -- Chorda- und Wirbeltiere -- Das Silur - Perm (445-250 Mio. Jahre). , Marine Invertebraten -- Organismen des Festlandes -- Marine Wirbeltiere -- Das Mesozoikum (252-66 Mio. Jahre) -- Marine Mikroorganismen -- Marine Invertebraten -- Landpflanzen -- Reptilien -- Säuger -- Das Känozoikum (66 Mio. Jahre-heute) -- Marine Mikroorganismen -- Marine Invertebraten -- Säuger -- 4. Taxonomie und Klassifikationsschemata -- 4.1. Nomenklatur und Kategorien -- Taxonomische Kategorien -- 4.2. Der Artbegriff -- Variationsbreite und Biometrie -- Typuskonzepte -- Artabgrenzung in Entwicklungsreihen -- 4.3. Klassifikationsschemata -- Phylogenetische Systematik -- Evolutionäre Klassifikation -- Numerische Klassifikation -- 5. Evolution und der Baum des Lebens -- 5.1. Evolutionstheorie -- 5.2. Vielfalt und Vererbung -- Träger der Erbanlagen -- Mendelsche Regeln -- Mutation -- Selektion -- 5.3. Evolutionsabläufe -- Entstehung von Arten -- Mikroevolution und Artbildungsraten -- Makroevolution -- Zeitlichkeit und Ablauf makroevolutionärer Prozesse -- Formen der Evolution -- Ontogenie und Evolution -- Alte DNA -- Die molekulare Uhr -- 6. Fossilisation (Taphonomie) -- 6.1. Der Sterbeprozess (nekrotische Vorgänge) -- 6.2. Einbettung (Biostratinomie) -- Die organische Substanz -- Die Hartteile -- Zerfall der Hartteile -- Autochthone Einbettung -- Allochthone Einbettung -- 6.3. Fossildiagenese -- Substanz-Erhaltung -- Lösung -- Molekulare Umsetzung -- Imprägnation -- Inkrustation -- Steinkern -- Konkretionen -- Deformation -- Korrosion -- Lücken der Überlieferung -- 6.4. Grabgemeinschaften (Taphozönosen) -- 6.5. Fossillagerstätten -- Anreicherungslagerstätten (Konzentrat- und Kondensatlagerstätten) -- Konzentratlagerstätten -- Kondensatlagerstätten -- Erhaltungslagerstätten (Konservatlagerstätten) -- 7. Lebensweise -- 7.1. Ernährung -- Autotrophie -- Heterotrophie -- Herbivorie -- Carnivorie -- Mikrophagie -- Omnivorie und Saprophagie. , Parasitismus -- 7.2. Atmung -- 7.3. Fortpflanzung -- K- und r-Strategen -- Ungeschlechtliche Fortpflanzung -- Vegetative Fortpflanzung -- Geschlechtliche Fortpflanzung -- Jungfernzeugung -- Verbreitung der Fortpflanzungskörper -- 7.4. Taxiologie -- 7.5. Aquatischer Lebensbereich -- Plankton -- Nekton -- Benthos -- 7.6. Terrestrischer Lebensbereich -- 8. Autökologie -- 8.1. Land- Meerverteilung, Oberflächengestaltung -- 8.2. Licht -- 8.3. Temperatur -- 8.4. Ozeanströmungen -- 8.5. Gezeiten -- 8.6. Sauerstoff -- 8.7. Salzgehalt (Salinität) -- 8.8. Substrat -- 8.9. Wassertiefe (Bathymetrie) -- 8.10. Niederschlag -- 8.11. Kombination autökologischer Faktoren -- 9. Synökologie -- 9.1. Zusammenleben von Arten (Synökie) -- 9.2. Nahrung, Nahrungsketten -- 9.3. Lebensgemeinschaften (Biozönosen) -- 9.4. Lebensgemeinschaften des Meeres -- Pelagische Gemeinschaften -- Neritische Gemeinschaften -- 9.5. Lebensgemeinschaften des Festlandes -- 10. Paläobiogeographie -- 10.1. Das Areal -- 10.2. Diversitätsmuster -- 10.3. Ausbreitung -- Isolierung -- Wanderungen -- 10.4. Biogeographische Regionen -- Das Festland -- Der Ozean -- 10.5. Geosphärensteuerung -- Plattentektonik -- Meeresspiegelschwankungen -- 10.6. Paläobiogeographische Fallstudien -- Driftende Kontinente -- Der große amerikanische Faunenaustausch -- 11. Paläoumweltrekonstruktionen -- 11.1. Fossilien als Umweltindikatoren -- Arten -- Fossilvergesellschaftungen -- Artenvielfalt und Häufigkeit -- Gilden -- Fossilvergesellschaftungen in der Erdgeschichte -- 11.2. Geochemie von Hartteilen als Umweltindikator -- Biomineralisation und Schalenmineralogie -- Haupt- und Spurenelemente -- Stabile Isotope -- Sauerstoffisotopie -- Kohlenstoffisotopie -- Strontium-Isotopenverhältnisse -- 11.3. Klima und Umwelt -- Eishauswelten, Treibhauswelten -- Fallbeispiele -- Das Kreide-Hothouse -- Das PETM Ereignis. , Kalzit- und Aragonitozeane -- 11.4. Fallbeispiele -- Die Chengjiang-Fauna -- Burgess Shale -- Holzmaden -- Solnhofen -- Messel -- 12. Massenaussterben (MA) -- 12.1. Aussterbemuster -- 12.2. Ursachen für Massenaussterben -- 12.3. Die fünf großen Aussterbeereignisse -- Muster von Massenaussterben -- Ordovizium -- Devon -- Perm/Trias -- Trias/Jura -- Kreide/Paläogen -- 12.4. Erholungsphasen -- 13. Spurenfossilien -- 13.1. Benennung und Erhaltung -- 13.2. Typen von Spurenfossilien -- Ruhespuren -- Bewegungsspuren -- Weidespuren -- Kultivierungsspuren -- Fressspuren -- Wohnspuren -- Fluchtspuren -- Weitere Spurenfossilien -- 13.3. Paläoumweltrekonstruktionen -- 13.4. Ichnofazies -- 14. Zeitmessung und Fossilien -- 14.1. Chronostratigraphie -- Biostratigraphie -- Leitfossilien -- Biostratigraphische Einheiten -- Ökostratigraphie -- Multistratigraphie -- Faunenschnitte und Schichtlücken -- 14.2. Geochronologie -- Literatur -- Internetquellen (Zugriffe 2015, 2016) -- Sachregister -- Namensregister.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Book
    Book
    Stuttgart : Schweizerbart Science Publishers
    Keywords: Lehrbuch ; Paläontologie ; Paläobiologie
    Type of Medium: Book
    Pages: VII, 320 Seiten , Illustrationen, Diagramme, Karten , 24 cm x 17 cm, 710 g
    Edition: 6., neu bearbeitete und ergänzte Auflage
    ISBN: 3510654153 , 9783510654154
    Series Statement: Einführung in die Paläobiologie / von Bernhard Ziegler Teil 1
    DDC: 560
    RVK:
    Former Title: Vorangegangen ist
    Language: German
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-09-08
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-02-16
    Description: The Cenomanian–Turonian Boundary Event (CTBE) is reflected by one of the most extreme carbon cycle perturbations in Earth's history and is characterized by the widespread occurrence of sediments indicating oxygen deficiency in oceanic waters (Oceanic Anoxic Event 2 = OAE 2). At Wunstorf (northern Germany) the CTBE is represented by a 26.5 m thick sedimentary succession consisting of rhythmically bedded laminated black shales, dark organic-rich marls and marly limestones yielding abundant micro- and macrofossils, making the locality particularly well suited to serve as an international standard reference section for the CTBE. In 2006 a newly drilled continuous core recovered 76 m of middle Cenomanian to middle Turonian sediments. A high-resolution carbonate δ13C curve derived from core samples resolves all known features of the positive δ13C anomaly of OAE 2 with high accuracy. Throughout the middle Cenomanian – middle Turonian succession, the δ13C curve shows numerous small-scaled positive excursions, which appear to be cyclic. High-resolution borehole geophysics and XRF core scanning were performed to generate two time series of gamma-ray data and Ti concentrations for the CTBE black shale succession. Hierarchical bundling of sedimentary cycles as well as spectral analysis and Gaussian filtering of dominant frequencies reveal cycle frequency ratios characteristic for short eccentricity modulated precession (100 kyr, 21 kyr). This new orbital time scale provides a time estimate of 430–445 kyr for the duration of OAE 2 and refines the existing orbital age models developed at localities in the English Chalk, the Western Interior Basin and the Tarfaya Basin. Based on the new age model and high-resolution carbon isotope correlation, our data allow for the first time a precise basin-wide reconstruction of the palaeoceanographic modifications within the European shelf sea during OAE 2.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Alfred-Wegener-Institut für Polar- und Meeresforschung
    In:  In: ARCTIC '98: The Expedition ARK-XIV/1a of RV Polarstern in 1998. , ed. by Jokat, W. Berichte zur Polarforschung = Reports on Polar Research, 308 . Alfred-Wegener-Institut für Polar- und Meeresforschung, Bremerhaven, pp. 30-75.
    Publication Date: 2019-09-23
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Elsevier
    In:  Palaeogeography, Palaeoclimatology, Palaeoecology, 284 (3-4). pp. 153-163.
    Publication Date: 2021-08-24
    Description: Calcitic belemnite guards are often used for temperature reconstructions of ancient seawater by using oxygen isotope thermometry. These geochemical studies discuss diagenesis and vital effects but neglect ecological or biogeographic effects on the isotope signature. To estimate the impact of seasonal temperature variations, short-term salinity changes and biogeography on the isotope signals we compare the δ18O and δ13C signals of ten cuttlebones with local water temperatures. The cuttlebones (aragonitic internal shells) come from five different species of recent cuttlefish (Sepiidae, Sepia sp.) from seven different regions (North Sea, Baltic Sea, Mediterranean, Red Sea, Angola, North Australia and Tasmania). All analysed specimens reflect the temperature-characteristics of their habitat perfectly. The δ18O signal and calculated temperatures follow annual temperature changes of up to 15 °C. The δ13C values show no clear pattern and are thought to be controlled by vital effects. Freshwater influence is recognizable in the negative δ18O and δ13C values of the Baltic Sea specimen, although sudden short-term salinity changes are not reflected by the signatures.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-10-06
    Description: The first occurrence of the belemnite species Liobelus acrei (formerly Acroteuthis acrei) is reported from the Lower Cretaceous (Valanginian) of the Vocontian Basin (VB; south‐east France). This first record of the genus Liobelus (Family Cylindroteuthididae), which is commonly attributed to the latest Jurassic and Early Cretaceous of the Boreal Realm, revises the spatial distribution pattern of boreal belemnites significantly. The Valanginian belemnite assemblages of the VB are dominated by genera of Tethyan ancestry, including both Duvaliidae (Berriasibelus, Castellanibelus, Duvalia, Pseudobelus) and Belemnopseidae (Adiakritobelus, Hibolithes, Mirabelobelus, Vaunagites). These two groups of Tethyan taxa comprise more than 99.9% of the belemnite‐rich assemblages of the Valanginian of the VB. The occurrence of a boreal specimen documents an isolated immigration of belemnites from the north in the early Valanginian. At the same time most Tethyan belemnite taxa are absent from the Boreal Realm, only Duvalia, Pseudobelus and Hibolithes have been described from North‐East Greenland, and Hibolithes from Svalbard. Based on these diverging biogeographical patterns of the Tethyan belemnite genera we establish two taxonomically different belemnite faunas: Tethyan Fauna 1 (Duvalia, Pseudobelus, Hibolithes), which has a near global, Tethyan‐wide and even boreal distribution, and Tethyan Fauna 2 (Adiakritobelus, Berriasibelus, Castellanibelus, Mirabelobelus, Vaunagites), which is less widely distributed and is restricted to southern Europe. These different spatial distribution patterns shed light on the ecology, migration patterns and evolution of Early Cretaceous belemnites.
    Keywords: ddc:564.5
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Linnert, Christian; Engelke, Julia; Wilmsen, Markus; Mutterlose, Jörg (2016): The impact of the Maastrichtian cooling on the marine nutrient regime - evidence from mid-latitudinal calcareous nannofossils. Paleoceanography, 31(6), 696-714, https://doi.org/10.1002/2015PA002916
    Publication Date: 2023-01-13
    Description: The latest Campanian-earliest Maastrichtian interval is well known as a period of intense climate cooling. This cooling caused a distinctive bipolar biogeographic distribution of calcareous nannofossil assemblages: High latitude settings were dominated by newly evolving endemic taxa, former cosmopolitan species disappeared at the same time and equatorial communities experienced an invasion of cool water taxa. The impact of this cooling on northern mid-latitude assemblages is, however, less well known. In order to overcome this gap we studied the Kronsmoor section (northwest Germany). This section provides a continuous upper Campanian - lower Maastrichtian succession with moderately to well preserved nannofossils. Uppermost Campanian assemblages are dominated by Prediscosphaera cretacea; other common taxa include Prediscosphaera stoveri, Watznaueria barnesiae and Micula staurophora. The lower Maastrichtian is characterized by lower numbers of P. cretacea and frequent Kamptnerius magnificus, Arkhangelskiella cymbiformis and Cribrosphaerella ehrenbergii. These changes reflect, in part, the Campanian-Maastrichtian boundary cooling since some successful taxa (e.g. K. magnificus) are related to cool surface waters. Other shifts in the nannofossil communities were perhaps the result of a changing nutrient regime. Stronger latitudinal gradients may have increased wind velocities and thus the eolian input of ferruginous dust required by N-fixing bacteria. The enhanced high latitude deep-water formation probably changed the bottom-water environment in disfavor of denitrificating organisms. A decline of chemical weathering and fluviatile transport may have reduced the amount of bioavailable phosphate. These processes led to an increased nitrate and a decreased phosphate content shifting the nutrient regime from nitrate towards phosphate limitation.
    Keywords: Germany, North; Kronsmoor; MULT; Multiple investigations
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Linnert, Christian; Mutterlose, Jörg (2009): Evidence of increasing surface water oligotrophy during the Campanian-Maastrichtian boundary interval: Calcareous nannofossils from DSDP Hole 390A (Blake Nose). Marine Micropaleontology, 73(1-2), 26-36, https://doi.org/10.1016/j.marmicro.2009.06.006
    Publication Date: 2023-07-10
    Description: The latest Cretaceous (Campanian–Maastrichtian) is characterized by several global cooling and intermittent warming events. These climatic changes influenced the palaeoceanography substantially, including changes of the deep water sources and surface water currents. One of the most prominent episodes of climatic cooling occurred during the Campanian–Maastrichtian transition. This study focuses on the palaeoclimate and palaeoceanography of the Campanian–Maastrichtian transition by analysing the calcareous nannofossils of DSDP Hole 390A (139.92–126.15 mbsf; Blake Nose). For the examination of calcareous nannofossils sixty samples were processed using the settling technique. Biostratigraphical index taxa (Broinsonia parca constricta, Uniplanarius trifidus, and Tranolithus orionatus) suggest a late Campanian age for the major part of the studied section. The calcareous nannofossils are well preserved, highly abundant (6.80 billion specimens/gram sediment) and diverse (80 species/sample). The assemblages are dominated by Prediscosphaera spp. (20.5%), Watznaueria spp. (20.3%) and Retecapsa spp. (9.8%). Cool water taxa (Ahmuellerella octoradiata, Gartnerago segmentatum, and Kamptnerius magnificus), however, appear less frequently and do not exceed more than 1%. Due to their rarity these cool water taxa do not support the existence of an intense cooling phase during the Campanian–Maastrichtian transition at DSDP Hole 390A. Around 133 mbsf several nannofossil taxa, however, show a distinctive turnover. Mesotrophic species like Discorhabdus ignotus, Zeugrhabdotus bicrescenticus and Zygodiscus exmouthiensis are abundant below 133 mbsf, whereas oligotrophic taxa like Watznaueria spp., Eiffellithus spp. and Staurolithites flavus become common above this level. These changes imply a decrease in the input of nutrients, perhaps caused by a reorganization of ocean currents (Palaeo Gulf Stream) and reduced upwelling.
    Keywords: 44-390A; Ahmuellerella octoradiata; Ahmuellerella regularis; Amphizygus brooksii; Amphizygus cf. brooksii; Arkhangelskiella cymbiformis; Biscutum dissimile; Biscutum ellipticum; Biscutum magnum; Biscutum melaniae; Biscutum notaculum; Braarudosphaera bigelowii; Broinsonia parca constricta; Broinsonia signata; Bukrylithus ambiguus; Calculites obscurus; Ceratolithoides brevicorniculans; Ceratolithoides cf. kamptneri; Ceratolithoides indiensis; Ceratolithoides longissimus; Ceratolithoides prominens; Ceratolithoides self-trailiae; Ceratolithoides sp.; Chiastozygus amphipons; Chiastozygus antiquus; Chiastozygus bifarius; Chiastozygus litterarius; Chiastozygus synquadriperforatus; Chiastozygus trabalis; Corollithion completum; Corollithion exiguum; Corollithion madagaskarensis; Corollithion signum; Cretarhabdus conicus; Cribrocorona gallica; Cribrosphaerella ehrenbergii; Cyclagelosphaera reinhardtii; Cylindralithus nieliae; Cylindralithus sculptus; Cylindralithus serratus; Deep Sea Drilling Project; DEPTH, sediment/rock; Discorhabdus ignotus; Diversity, simple; DRILL; Drilling/drill rig; DSDP; DSDP/ODP/IODP sample designation; Eiffellithus eximius; Eiffellithus gorkae; Eiffellithus turriseiffelii; Eprolithus sp.; Evenness of species; Flabellites oblongus; Gartnerago segmentatum; Glomar Challenger; Gorkaea obliqueclausus; Grantarhabdus coronadventis; Helicolithus trabeculatus; Kamptnerius magnificus; Lapideacassis sp.; Leg44; Lithraphidites carniolensis; Lithraphidites praequadratus; Lucianorhabdus cayeuxii; Manivitella pemmatoidea; Markalius inversus; Marthasterites sp.; Micrantholithus quasihoschulzii; Microrhabdulus decoratus; Micula concava; Micula decussata; Micula sp.; Micula swastica; Miravetesina bergenii; Misceomarginatus pleniporus; Nannofossils; North Atlantic; Palaeopontosphaera sp.; Perchnielsenella stradneri; Pervilithus varius; Petrarhabdus vietus; Petrobrasiella bownii; Placozygus fibuliformis; Prediscosphaera cretacea; Prediscosphaera grandis; Prediscosphaera majungae; Prediscosphaera microrhabdulina; Prediscosphaera sp.; Prediscosphaera spinosa; Prediscosphaera spp.; Prolatipatella multicarinata; Quadrum gartneri; Random settling technique; Geissen et al. (1999); Reinhardtites levis; Retecapsa angustiforata; Retecapsa crenulata; Retecapsa ficula; Retecapsa schizobrachiata; Retecapsa spp.; Retecapsa surirella; Rhagodiscus angustus; Rhagodiscus indistinctus; Rhagodiscus reniformis; Rhagodiscus splendens; Rhomboaster sp.; Rotelapillus biarcus; Rucinolithus hayi; Rucinolithus sp.; Sample code/label; Scapholithus fossilis; Shannon Diversity Index; Staurolithites ellipticus; Staurolithites flavus; Staurolithites mielnicensis; Staurolithites mutterlosei; Tegumentum stradneri; Tetrapodorhabdus decorus; Tranolithus minimus; Tranolithus orionatus; Tubodiscus sp.; Uniplanarius gothicus; Uniplanarius trifidus; Watznaueria barnesiae; Watznaueria biporta; Watznaueria fossacincta; Watznaueria ovata; Watznaueria spp.; Zeugrhabdotus bicrescenticus; Zeugrhabdotus embergeri; Zeugrhabdotus erectus; Zeugrhabdotus noeliae; Zeugrhabdotus sigmoides; Zygodiscus exmouthiensis; Zygodiscus tunisiensis
    Type: Dataset
    Format: text/tab-separated-values, 7620 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...