GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Springer  (7)
  • ELSEVIER SCIENCE BV  (2)
  • Hellenic Centre for Marine Research  (2)
  • 2015-2019  (6)
  • 2005-2009  (4)
  • 2000-2004  (1)
  • 1
    ISSN: 1432-2056
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Lipid and fatty acid compositions of five notothenioid fishes from the Antarctic Weddell and Lazarev Seas were investigated in detail with regard to their different modes of life. The pelagic Aethotaxis mitopteryx was the lipid-richest species (mean of 61.4% of dry mass, DM) followed by Pleuragramma antarcticum (37.7%DM). The benthopelagic Trematomus lepidorhinus had an intermediate lipid content of 23.2%DM. The benthic Bathydraco marri (20.8%DM) and Dolloidraco longedorsalis (14.5%DM) belonged to the lipid-poorer species. Triacylglycerols were the major lipid class in all species. Important fatty acids were 16:0, 16:1(n-7), 18:1(n-9), 18:1(n-7), 20:5(n-3) and 22:6(n-3). The enhanced proportions of the long-chain monounsaturated fatty acids, 20:1 and 22:1, in the lipid-rich pelagic fishes clearly reflected the ingestion of the two copepod species, Calanoides acutus and Calanus propinquus, which are the only known Antarctic zooplankters rich in these fatty acids. Although wax esters are the major storage lipid in many prey species, they were absent in all notothenioid fishes studied. Thus, wax esters ingested with prey are probably converted to triacylglycerols via fatty acids or metabolised by the fishes. The enhanced lipid accumulation with increasingly pelagic lifestyle has energetic advantages, especially with regard to improved buoyancy. It is still unknown to what extent these lipids are utilised as energy reserves, since it has been suggested that not only the benthic but also the pelagic Antarctic fishes are rather sluggish, with a low scope for activity and hence low metabolic requirements.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-01-29
    Description: Lipid content, fatty acid composition, and feeding activity of the dominant Antarctic copepods, Calanoides acutus, Calanus propinquus, and Metridia gerlachei, were studied at a quasi-permanent station in the eastern Weddell Sea in December 2003. During 3 weeks of the spring phytoplankton development, total lipid levels of females and copepodite stages V (CVs) of C. acutus were almost doubled. Meanwhile, only a slight increase in total lipid content occurred in M. gerlachei, and no clear trend was observed in lipids of C. propinquus females. The pronounced increase of lipids in C. acutus was due to an accumulation of wax esters. The proportion of wax esters in the lipids of M. gerlachei was clearly lower, while triacylglycerols played a more important role. In C. propinquus, triacylglycerols were the only neutral lipid class. There were no pronounced changes in the feeding activity of M. gerlachei, whereas the feeding activity of C. acutus had rapidly increased with the development of the phytoplankton bloom in December, which explains its rapid lipid accumulation. The combination of gut content and fatty acid trophic marker analyses showed that C. acutus was feeding predominantly on diatoms. The typical diatom fatty acid marker, 16:1(n-7), slightly decreased and the tracer for flagellates, 18:4(n-3), increased in females and CVs of C. acutus. This shift indicates the time, when the significance of flagellates started to increase. The three copepod species exhibited different patterns of lipid accumulation in relation to their trophic niches and different duration of their active phases. The investigations filled a crucial data gap in the seasonal lipid dynamics of dominant calanoid copepods in the Weddell Sea in December and support earlier hypotheses on their energetic adaptations and life cycle strategies.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-02-01
    Description: We conducted a year-round mesozooplankton study in the Arctic Kongsfjord from August 1998 until July 1999 to investigate seasonal abundance and vertical as well as stage distributions of the prevalent taxa. It is the first investigation in Kongsfjord that covers the Arctic winter season and provides reasonable estimates also of small-sized copepod species. Abundant smaller copepods comprised Oithona similis, Pseudocalanus minutus, Microcalanus spp., Triconia borealis and Acartia longiremis. Among the larger copepods, Calanus finmarchicus, C. glacialis, C. hyperboreus and Metridia longa dominated. The thecosome pteropod Limacina helicina was also an important component. Abundance maxima occurred in November (988,669 ind. m−2) with one to two orders of magnitude higher numbers as compared to all other months (39,832–200,067 ind. m−2). The summers of 1998 and 1999 were characterized by intrusions of Atlantic water, but the community was not entirely dominated by advected boreal species. During winter, the majority of the mesozooplankton occurred below 100 m. Advection is the most likely reason for the accumulation of zooplankton at depth in winter, but local production may also contribute to high overwintering numbers. Much lower abundances of most species in spring suggest high winter mortality and emphasize the importance of sufficient reproductive success during the previous summer to ensure enough winter survivors as seed stock for the coming reproductive season. This study was conducted prior to the recent warming trend in the Arctic. Therefore, it provides valuable baseline data and allows comparing present and future states of the zooplankton community in Kongsfjord.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-11-09
    Description: The year-round variation in abundance and stage-specific (vertical) distribution of Pseudocalanus minutus and Oithona similis was studied in the Arctic Kongsfjorden, Svalbard. Maxima of vertically integrated abundance were found in November with 111,297 ind m−2 for P. minutus and 704,633 ind m−2 for O. similis. Minimum abundances comprised 1,088 ind m−2 and 4,483 ind m−2 in June for P. minutus and O. similis, respectively. The congener P. acuspes only occurred in low numbers (15–213 ind m−2), and successful reproduction was debatable. Reproduction of P. minutus took place in May/June, and stage distribution revealed a 1-year life cycle with copepodids CIII, CIV, and CV as the overwintering stages. Oithona similis exhibited two main reproductive peaks in June and August/September, respectively. Moreover, it reproduced more or less continuously throughout the whole year with all stages occurring during the entire sampling period, suggesting two generations per year. Both species migrated towards greater depth in November, but O. similis preferred to stay longer in the upper 100 m as compared to Pseudocalanus. The reproduction of the two species in Kongsfjorden seemed to be linked to phytoplankton dynamics.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-11-09
    Description: Seasonal activities of the digestive enzyme trypsin were measured between August 1998 and May 1999 to study different nutritional strategies of the two copepods Pseudocalanus minutus and Oithona similis in the Arctic Kongsfjorden (Svalbard) using a highly sensitive fluorescence technique. Stage-, depth- and season-specific characteristics of digestive activity were reflected in the trypsin activity. P. minutus females and stage V copepodids (C) had highest trypsin activities in spring during reproduction (197.5 and 145.7 nmol min−1 ng C−1, respectively). In summer stages CIII–V and in autumn stages CIV and V had high activities (80–116 nmol min−1 ng C−1) in the shallow layer (〈 100 m) presumably as a consequence of prolonged feeding before descending to overwintering depth. Trypsin activities at depth (〉 100 m) in summer and autumn were low in stages CIII and CIV (29–60 nmol min−1 ng C−1) and in winter in all stages in both layers (20–43 nmol min−1 ng C−1). Based on low trypsin activity, males most likely did not feed. In O. similis, the spring phytoplankton bloom did not significantly affect trypsin activity as compared to the other seasons. O. similis CV and females had high trypsin activities in summer in the deep stratum (304.5 nmol min−1 ng C−1), which was concomitant with reproductive processes and energy storage for overwintering. In autumn, stage CV and female O. similis had significantly higher activities than stage CIV (130–152 versus 78 nmol min−1 ng C−1), which is in accordance with still ongoing developmental and reproductive processes in CVs and females. Comparisons of both species revealed different depth-related responses emphasizing different nutritional preferences: the mainly herbivorous P. minutus is more actively feeding in the shallow layer, where primary production occurs, whereas the omnivorous O. similis is not as much restricted to a certain depth layer, when searching for food. P. minutus had lower levels of trypsin activity during all seasons. In contrast to P. minutus, higher enzyme activities in males of O. similis suggest that they continue to feed and survive after fertilization of females.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-06-07
    Description: Seasonal lipid dynamics of various developmental stages were investigated in Pseudocalanus minutus and Oithona similis. For P. minutus, the dominance of 16:1(n−7), 16:4(n−3) and 20:5(n−3) fatty acids indicated a diatom-based nutrition in spring, whereas 22:6(n−3), 16:0, 18:2(n−6) and 18:1(n−9) pointed to a flagellate-based diet during the rest of the year as well as omnivorous/carnivorous low-level feeding during winter. The shorter-chain fatty alcohols 14:0 and 16:0 prevailed, also reflecting biosynthetic processes typical of omnivores or carnivores. Altogether, the lipid signatures characterized P. minutus as an opportunistic feeder. In contrast, O. similis had consistently high amounts of the 18:1(n−9) fatty acid in all stages and during all seasons pointing to a generally omnivorous/carnivorous/detritivorous diet. Furthermore, the fatty alcohol 20:1(n−9) reached high percentages especially in adult females and males, and feeding on Calanus faecal pellets is suggested. Fatty alcohols, as wax ester moieties, revealed significant seasonal variations in O. similis and a seasonal trend towards wax ester accumulation in autumn in P. minutus. P. minutus utilized its lipid deposits for development in the copepodite stages III and IV and for gonad maturation in CV and females during the dark season. However, CVs and females depended on the spring phytoplankton bloom for final maturation processes and reproduction. O. similis fueled gonad maturation and egg production for reproduction in June by wax esters, whereas reproduction in August/September co-occurred with the accumulation of new depot lipids. Both species revealed significantly higher wax ester levels in deeper (〉50 m) as compared to surface (0–50 m) dwelling individuals related to a descent prior to overwintering.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Hellenic Centre for Marine Research
    In:  EPIC351st European Marine Biology Symposium, Rhodes, Greece, 2016-09-26-2016-09-30Rhodes, Greece, Hellenic Centre for Marine Research
    Publication Date: 2016-11-18
    Description: The Asian shore crab H. sanguineus first appeared at the French coast in the late 1990’s. It rapidly extended its range further north to the German Wadden Sea and recently to western Sweden. In the intertidal area, it co-occurs with the European green crab C. maenas. As the ecophysiology of H. sanguineus is virtually unknown, the physiological capacities of both species and their potential for intra-guild competition were investigated. The aim of this study was to specifically compare the energy deposition and dietary preferences of ovigerous females of both species. Females of H. sanguineus and C. maenas carrying immature or mature eggs were collected in April, June, August and October 2015 in an intertidal area of the Island of Helgoland, North Sea. Total lipid levels and fatty acid compositions were determined of both midgut glands and eggs. In H. sanguineus, total lipid levels of the midgut glands were clearly higher than those of C. maenas (40% vs. 10% dry mass, DM). Immature eggs were quite lipid-rich in both species with 30% and 25%DM, respectively, whereas in mature eggs, lipid levels decreased to ~15%DM each. A Principal Component Analysis of the fatty acid compositions of midgut glands and eggs revealed separate clusters for both species with C. maenas lipids more characterized by membrane fatty acids. In C. maenas fatty acids of midgut glands and eggs clustered together largely dominated by carnivory biomarkers. Fatty acids of midgut glands and all eggs of H. sanguineus formed separate clusters and trophic markers indicate a more herbivorous diet. Higher lipid levels and thus more pronounced energy deposition in H. sanguineus midgut glands indicate higher starvation tolerance for females, a potential competitive advantage over C. maenas. Direct food competition, however, seems negligible, as H. sanguineus prefers a more herbivorous diet than C. maenas. Deviating fatty acid compositions in H. sanguineus midgut glands and eggs suggest that this species may represent an income breeder, utilizing energy from both the midgut gland but also from dietary input. Most brachyuran crabs are capital breeders, which rely exclusively on internal reserves.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Hellenic Centre for Marine Research
    In:  EPIC351st European Marine Biology Symposium, Rhodes, Greece, 2016-09-26-2016-09-30Rhodes, Greece, Hellenic Centre for Marine Research
    Publication Date: 2016-11-18
    Description: Biological invasions can entail major threats to marine biodiversity. Non-indigenous species may induce changes in community structure and ecosystem functioning, thereby affecting ecosystem services and human economic interest and health. Decapod brachyuran crabs are among the most invasive marine animal taxa. The originally European species Carcinus maenas and the Asian shore crab Hemigrapsus sanguineus invaded different coastal areas around the world. While their invasion history and ecology has been thoroughly investigated, physiological properties of H. sanguineus are virtually unknown. The aim of this study was to compare the metabolic energy demand of both crab species and - based on these data - to assess their potential dietary impact on the ecosystem. Respiration measurements were conducted with a flow-through system covering a temperature range naturally experienced by these crabs (5, 10, 15 and 20 °C). Both species were analyzed on the island of Helgoland in April, June and August 2015. A general linear mixed-effects model (LMM) was applied to test for the effects of species, temperature, biomass and sex on respiration rates. Overall rates increased with temperature but decreased with the mass of the crabs. Respiration rates did not differ significantly between sexes in both species. From the full model, two separated LMMs were created for either species. They allowed establishing species-specific equations for the prediction of respiration rates y (nmol d-1 g-1) for a crab of any given mass xMass (g) at any given ambient temperature xTemp (°C): ln y = 10.39 + (-0.34 * ln xMass) + (0.06 * xTemp) for C. maenas and ln y = 10.42 + (-0.39 * ln xMass) + (0.08 * xTemp) for H. sanguineus. The mass-specific respiration rates of C. maenas and H. sanguineus were quite similar. By applying the diet-dependent respiratory quotient, oxygen uptake may be used to calculate carbon uptake and metabolic energy demand either for single crabs or for entire populations of a given area. On the population level, the metabolic energy demand and thus ecosystem impact of both species depend primarily on their abundance in the field and, less so on their dietary preferences.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-10-17
    Description: Tolerance of organisms towards heterogeneous and variable environments is highly related to physiological flexibility. An effective strategy to enhance physiological flexibility is the expression of polymorphic enzymes. This seems to be the case in the brown shrimp Crangon crangon. It shows high reproduction rates, feeds opportunistically on endo- and epibenthic organisms, and is apparently well adapted to variable environmental conditions. Previous electrophoretic studies revealed a high level of polymorphism and no consistent phenotype of digestive enzymes between individuals. In order to understand the underlying biochemical processes, we carried out a transcriptome-based study of digestive enzymes of C. crangon. Detailed sequence analyses of triacylglycerol lipase, phospholipase A2, alpha amylase, chitinase, trypsin and cathepsin L were performed to identify putative isoforms. The number of isoforms, and thus the degree of polymorphism varied among enzymes: lipases and carbohydrases showed higher numbers of isoforms in enzymes that besides their extracellular function also have diverse intracellular functions. Furthermore, cysteine proteinases showed a lower polymorphism than serine proteinases. We suggest that the expression of enzyme isoforms improves the efficiency of C. crangon in gaining energy from different food sources.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Springer
    In:  EPIC3Handbook on Marine Environment Protection, Cham, Switzerland, Springer, 21 p., pp. 353-373, ISBN: 978-3-319-60156-4
    Publication Date: 2018-02-09
    Description: In this chapter, the effects of temperature change—as a main aspect of climate change—on marine biodiversity are assessed. Starting from a general discussion of species responses to temperature, the chapter presents how species respond to warming. These responses comprise adaptation and phenotypic plasticity as well as range shifts. The observed range shifts show more rapid shifts at the poleward range edge than at the equator-near edge, which probably reflects more rapid immigration than extinction in a warming world. A third avenue of changing biodiversity is change in species interactions, which can be altered by temporal and spatial shifts in interacting species. We then compare the potential changes in biodiversity to actual trends recently addressed in empirical synthesis work on local marine biodiversity, which lead to conceptual issues in quantifying the degree of biodiversity change. Finally we assess how climate change impacts the protection of marine environments.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...