GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wiley  (4)
  • 2020-2024  (4)
  • 1
    Publication Date: 2024-01-14
    Description: Severe storm flooding poses a major hazard to the coasts of north‐western Europe. However, the long‐term recurrence patterns of extreme coastal flooding and their governing factors are poorly understood. Therefore, high‐resolution sedimentary records of past North Atlantic storm flooding are required. This multi‐proxy study reconstructs storm‐induced overwash processes from coastal lake sediments on the Shetland Islands using grain‐size and geochemical data, and the re‐analysis of historical data. The chronostratigraphy is based on Bayesian age–depth modelling using accelerator mass spectrometry 14 C and 137 Cs data. A high XRF‐based Si/Ti ratio and the unimodal grain‐size distribution link the sand layers to the beach and thus storm‐induced overwash events. Periods with more frequent storm flooding occurred 980–1050, 1150–1300, 1450–1550, 1820–1900 and 1950–2000 ce, which is largely consistent with a positive North Atlantic Oscillation mode. The Little Ice Age (1400–1850 ce ) shows a gap of major sand layers suggesting a southward shift of storm tracks and a seasonal variance with more storm floods in spring and autumn. Warmer phases shifted winter storm tracks towards the north‐east Atlantic, indicating a possible trend for future storm‐track changes and increased storm flooding in the northern North Sea region.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: The Milos, Christiana-Santorini-Kolumbo (CSK) and Kos-Yali-Nisyros (KYN) volcanic complexes of the Aegean Volcanic Arc have repeatedly produced highly explosive eruptions from at least ∼360 ka into historic times and still show recent unrest. We present the marine tephra record from an array of 50, up to 7.4 m long, sediment cores along the arc collected in 2017 during RV Poseidon cruise POS513, which complements earlier work on distal to ultra-distal eastern Mediterranean sediment cores. A unique set of glass-shard trace element (LA-ICPMS) compositions complements our major element (EMP) data on 220 primary ash layers and 40 terrestrial samples to support geochemical fingerprinting for correlations with 19 known tephras from all three volcanic complexes and with the 39 ka Campanian Ignimbrite from the Campi Flegrei, Italy. The correlations include eleven eruptions from CSK (Kameni, Kolumbo 1650, Minoan, Cape Riva, Cape Tripiti, Upper Scoriae 1 and 2, Middle Pumice, Cape Thera, Lower Pumice, Cape Therma 3). We identify a previously unknown widespread tephra from a plinian eruption on Milos (Firiplaka Tephra). Near the KYN we correlate marine tephras with the Kos Plateau Tuff, the Yali 1 and Yali 2 tephras, and the Upper and Lower Pumice on Nisyros. Between these two major tephras, we found two tephras from Nisyros not yet observed on land. The four Nisyros tephras form a systematic trend toward more evolved magma compositions. In the companion paper we use the tephrostratigraphic framework established here to constrain new eruption ages and magnitudes as a contribution to volcanic hazard assessment.
    Type: Article , PeerReviewed
    Format: other
    Format: other
    Format: other
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: We use the tephrostratigraphic framework along the Aegean Volcanic Arc established in part 1 of this contribution to determine hemipelagic sedimentation rates, calculate new tephra ages, and constrain the minimum magnitudes of (sub)plinian eruptions of the last 200 kyrs. Hemipelagic sedimentation rates range from ∼0.5 cm/kyr up to ∼40 cm/kyr and vary laterally as well as over time. Interpolation between dated tephras yields an eruption age of ∼37 ka for the Firiplaka tephra, showing that explosive volcanism on Milos is ∼24 kyrs younger than previously thought. The four marine Nisyros tephras (N1 to N4) identified in part 1 (including the Upper (N1) and Lower (N4) Pumice) have ages of ∼57 ka, ∼63 ka, ∼69 ka, and ∼76 ka, respectively. Eruption ages for the Yali-1 and Yali-2 tephras are ∼55 ka and ∼34 ka, respectively. The Yali-2 tephra comprises two geochemically and laterally distinct marine facies. The southern facies is identical to the Yali-2 fall deposit on land but the western facies has slightly less evolved glass compositions. Overall, erupted plinian and co-ignimbrite fall tephra volumes range from 〈1 to 56 km3 (excluding possible caldera fillings and ignimbite volumes), and 80% of the eruptions had magnitude 5.5〈M≤7.2 (M=log(m)-7; m = erupted magma mass in kg). Twenty percent of the tephras represent 3.2〈M〈5.5 eruptions. The long-term average tephra magma mass flux through highly explosive eruptions of Santorini is estimated at ∼40 kg/s. The analogous data for the Kos-Yali-Nisyros volcanic complex is less-well constrained but similar to Santorini.
    Type: Article , PeerReviewed
    Format: archive
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-05-28
    Description: The Cabo Verde Archipelago is related to a mantle plume located close to the rotational pole of the African Plate. It consists of islands and seamounts arranged in a horseshoe‐shaped pattern open to the west, thus forming two volcanic chains, each with a weak east‐west age progression. High‐resolution swath bathymetry of 12 Cabo Verde seamounts is used here to assign each seamount to its pre‐shield, shield or post‐shield evolutionary stage, respectively. The eastern seamounts exhibit degraded and partially eroded morphologies, and are mainly in their post‐shield stage. A new 40 Ar‐ 39 Ar date for Senghor Seamount at 14.872 ± 0.027 Ma supports old ages for the eastern seamounts. The western seamounts generally exhibit younger volcanic‐edifice‐construction morphologies, showing fresh effusive and explosive volcanics, including rarely observed deep‐water explosive volcanism in the Charles Darwin Volcanic Field. Furthermore, the two previously unknown seamounts Sodade and Tavares in the westernmost termini of both volcanic chains exhibit pristine volcanic morphologies, in agreement with present‐day volcanism and seismic activity recorded from the western seamounts. The islands and seamounts rest on three submarine platforms to the east, northwest and southwest, respectively. Taken together, the seamount and island data suggest a shift in igneous activity from the eastern to the other platforms at about 8–6 Ma. However, the complex evolution pattern for both volcanic chains includes the simultaneous occurrence of pre‐shield or shield edifices at any time, followed by erosional and rejuvenation stages. The new seamount data still demonstrate ongoing westward submarine‐growth in both volcanic chains. Plain Language Summary The Cabo Verde volcanic islands and seamounts are located in the central Atlantic Ocean, ∼570 km off the west coast of Africa. They form a horseshoe‐shaped archipelago with two volcanic chains, which were formed by the African plate moving very slowly over a mantle hotspot (the Cabo Verde Plume). Both the northern and southern volcanic chains show weak east‐to‐west age progressions from ∼26 million years to the present day. This study uses underwater topographic data and observations/rock sampling via remotely operated vehicles from 12 submarine volcanic seamounts, including two previously unknown seamounts, collected during four research cruises in the Cabo Verde Archipelago. Geomorphology is used to classify each seamount as being in its pre‐shield, shield or post‐shield evolutionary stage, respectively. Cabo Verde islands and seamounts rest on three submarine morphological platforms, reflecting westward jumps of the main igneous activity, and also confirming the westward migration of the Cabo Verde hotspot beneath both volcanic chains. Key Points We present bathymetrical maps of 12, in part previously uncharted Cabo Verde seamounts Geomorphology reflects various evolutionary seamount stages and relative ages. Four older seamounts indicate late Quaternary sea level lowstands Islands and seamounts rest on three morphological platforms, indicating westward jumps of the main igneous activity
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...