GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Elsevier  (3)
  • EAGE
  • 2020-2024  (3)
  • 1
    Publication Date: 2023-02-08
    Description: Highlights • Combining porewater geochemistry, geochemical modeling and subsurface geophysical data in order to understand the fluid flow system of Kerch seep area. • This seep area is not in steady state. • Methane transport is in the form of gas bubbles not porewater advection. • High surface temperatures are the result of hydrate formation and not an indication for elevated geothermal gradients. • Modeling says this seep is young (〈500 years old). Abstract High-resolution 3D seismic data in combination with deep-towed sidescan sonar data and porewater analysis give insights into the seafloor expression and the plumbing system of the actively gas emitting Kerch seep area, which is located in the northeastern Black Sea in around 900 m water depth, i.e. well within the gas hydrate stability zone (GHSZ). Our analysis shows that the Kerch seep consists of three closely spaced but individual seeps above a paleo-channel-levee system of the Don Kuban deep-sea fan. We show that mounded seep morphology results from sediment up-doming due to gas overpressure. Each of the seeps hosts its own gas pocket underneath the domes which are fed with methane of predominantly microbial origin along narrow pipes through the GHSZ. Methane transport occurs dominantly in the form of gas bubbles decoupled from fluid advection. Elevated sediment temperatures of up to 0.3 °C above background values are most likely the result of gas hydrate formation within the uppermost 10 m of the sediment column. Compared to other seeps occurring within the GHSZ in the Black Sea overall only scarce gas indications are present in geoacoustic and geophysical data. Transport-reaction modeling suggests that the Kerch seep is a young seep far from steady state and probably not more than 500 years old.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-08
    Description: Highlights • Seismic depth imaging gives insight into the southern Hikurangi subduction zone. • Velocities reveal regional variations in compaction and drainage of input sediments. • Dewatering of subducted sediments might influence décollement strength. • Thrusts at the leading edge of deformation are upper-plate dewatering pathways. • Stratigraphic host of the décollement changes at the southern end of the margin. Abstract The southern end of New Zealand's Hikurangi subduction margin accommodates highly oblique convergence between the Pacific and Australian plates. We carry out two-dimensional (2D) seismic reflection tomography and pre-stack depth migrations on two seismic lines to gain insight into the nature of subducted sediments and upper plate faulting and dewatering at the toe of the wedge. We also investigate the NE to SW evolution of emergent upper plate thrust faulting using 47 seismic lines spanning an along-strike distance of ∼270 km. The upper sequence of sediments that ultimately gets subducted (the MES sequence) has an anomalously-low seismic velocity character. At the southwestern end of the margin, ∼150 km east of Kaikōura, the MES sequence has experienced greater compaction (for an equivalent effective vertical stress) than it has some 200 km further to the northeast. This difference is likely attributable to greater horizontal compression in the southwest caused by impingement of the Chatham Rise on the deformation front. Relationships between velocity and effective vertical stress suggest that the MES sequence is well-drained in the vicinity of frontal thrusts, corroborated by evidence for upper plate dewatering along those thrusts. Effective drainage of the MES sequence likely promotes interplate coupling on the southern Hikurangi margin. The décollement is generally hosted near a seismic reflector known as “Reflector 7”. East of Kaikōura, however, Reflector 7 becomes accreted, indicating that subduction slip at the southwestern end of the margin is no longer hosted at (or above) this reflector. Instead, the décollement steps down to a deeper stratigraphic level further inboard. Further to the SW, approximately in line with the lower Kaikōura Canyon, the offshore manifestation of subduction-driven compression ceases.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: The subduction of seamounts and basement ridges affects the structure, morphology, and physical state of a convergent margin. To evaluate their impact on the seismo-tectonic setting of the subduction zone and the tectonic development of the lower subducting and upper overriding plate, it is essential to know the precise location of subducted topographic features under the marine forearc. Offshore Northern Chile, the Iquique Ridge represents a broad zone of complex and heterogeneous structure of variable width on the oceanic Nazca Plate, which complicates attempts to project it beneath the forearc of the Chilean subduction zone. Here we use a state-of-the-art seismic reflection data processing approach to map structures related to ridge subduction under the marine forearc with unprecedented accuracy and resolution and evaluate their impact on the deformation of both the plate boundary and the upper plate. We show that significant ridge-related topography is currently subducting south of 20.5 °S and that the combined effect of horst and graben subduction with subduction of Iquique ridge-related thickened and elevated crust causes an upward bulging of the entire upper plate from the plate interface up to the seafloor as well as the presence of kilometer-scale anticlinal structures observed in multibeam bathymetric data that are approximately aligned with horsts seaward of the trench. In the area affected by the subducting ridge, a frontal prism is absent, which may relate to frontal subduction erosion caused by the excess lower plate topography. In contrast farther towards the north, where only isolated seamounts subduct, a small frontal prism and a slope/apron sediment cover down to 3000 m water depth are found.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...