GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Language
  • 1
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Natural gas-Hydrates. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (501 pages)
    Edition: 1st ed.
    ISBN: 9783030811860
    DDC: 553.285
    Language: English
    Note: Intro -- Preface -- Contents -- Editors and Contributors -- A History of Gas Hydrate Research -- 1 Gas Hydrate Research: From the Laboratory to the Pipeline -- Abstract -- 1.1 General Aspects -- 1.2 Experimental Hydrate Research -- 1.2.1 Multiscale Approach -- 1.2.2 Overview of Experimental Techniques -- 1.2.2.1 Small (Laboratory) Scale -- 1.2.2.2 Pilot Scale -- 1.3 Final Considerations -- Acknowledgements -- References -- 2 Shallow Gas Hydrates Near 64° N, Off Mid-Norway: Concerns Regarding Drilling and Production Technologies -- Abstract -- 2.1 Introduction -- 2.2 The Nyegga Gas Hydrate Location -- 2.2.1 General -- 2.2.2 The BSR -- 2.2.2.1 BSR-Related Drilling and Engineering Concerns -- 2.2.3 Complex Pockmarks -- 2.2.4 Hydrate Pingoes -- 2.2.4.1 A Qualitative Model for Hydrate Pingo Formation -- 2.2.5 Carbonate Rubble -- 2.2.6 Pockmark-, Carbonate Rubble-, and Pingo-Related Engineering Concerns -- 2.2.7 Unique Fauna -- 2.2.8 Fauna-Related Drilling and Engineering Concerns -- 2.2.9 Gas Chimneys -- 2.2.10 Gas-Chimney Related Drilling, Production, and Engineering Concerns -- 2.3 Husmus Geological Setting -- 2.3.1 General -- 2.3.2 The Shallow BSR at Husmus -- 2.3.3 Husmus-Related Drilling and Engineering Concerns -- 2.4 Ormen Lange Gas Seeping Event -- 2.4.1 Gas Seepage-Related Drilling and Engineering Concerns -- 2.5 Conclusions -- Acknowledgements -- References -- 3 Finding and Using the World's Gas Hydrates -- Abstract -- 3.1 Introduction-The Location of Gas Hydrates Beneath the Seabed -- 3.2 History of Gas Hydrate Exploration and Global Assessments of Distribution -- 3.3 The Importance of Natural Gas Hydrates -- 3.3.1 The Role of Gas Hydrates in Climate Change -- 3.3.2 Hydrates as a Control on Benthic Ecosystems -- 3.3.3 The Role of Gas Hydrates in Slope Stability -- 3.3.4 Hydrates as a Future Energy Source. , 3.3.5 Carbon Capture and Storage (CCS) in Gas Hydrate Reservoirs -- 3.4 Evidence of Submarine Gas Hydrates -- 3.4.1 Geophysical Evidence -- 3.4.2 Quantifying Hydrates Through Chemical Measurements of Cores -- 3.4.3 Borehole Logging -- 3.5 Gas Hydrates in the Solar System: Applying Lessons from Earth -- 3.6 Summary -- References -- Gas Hydrate Fundamentals -- 4 Seismic Rock Physics of Gas-Hydrate Bearing Sediments -- Abstract -- 4.1 Introduction -- 4.2 Dry-Rock Moduli -- 4.2.1 Elastic Moduli from Theoretical Models -- 4.2.2 Dry-Rock Elastic Moduli from Calibration -- 4.3 Effective-Fluid Model for Partial Saturation -- 4.4 Permeability -- 4.5 Attenuation -- 4.6 Seismic Velocities -- 4.7 Estimation of the Seismic Velocities and Attenuation -- 4.8 Conclusions -- References -- 5 Estimation of Gas Hydrates in the Pore Space of Sediments Using Inversion Methods -- Abstract -- 5.1 Introduction -- 5.2 Methods, Physical Properties and Microstructures Used for Hydrate Quantification -- 5.3 Strategy for Gas Hydrate Exploration and Quantification -- 5.4 Conclusions -- References -- 6 Electromagnetic Applications in Methane Hydrate Reservoirs -- Abstract -- 6.1 Introduction -- 6.2 Electrical Properties of Gas Hydrates -- 6.2.1 Saturation Estimates -- 6.3 Marine CSEM Principle -- 6.4 CSEM Data Interpretation -- 6.5 CSEM Instrumentation and Exploration History -- 6.5.1 Seafloor-Towed Systems -- 6.5.2 Deep-Towed Systems -- 6.5.3 Other Systems -- 6.6 Global Case Studies -- 6.7 Discussion and Conclusions -- References -- Gas Hydrate Drilling for Research and Natural Resources -- 7 Hydrate Ridge-A Gas Hydrate System in a Subduction Zone Setting -- Abstract -- 7.1 Introduction -- 7.2 Tectonic Setting -- 7.3 Stratigraphy and Structure -- 7.4 The Bottom Simulating Reflection Across Hydrate Ridge -- 7.5 Hydrate Occurrence and Distribution Within Hydrate Ridge. , 7.5.1 Hydrate Concentrations from Drilling -- 7.5.2 Inferred Hydrates and Free Gas Regionally Across Hydrate Ridge -- 7.6 Conclusions -- References -- 8 Northern Cascadia Margin Gas Hydrates-Regional Geophysical Surveying, IODP Drilling Leg 311 and Cabled Observatory Monitoring -- Abstract -- 8.1 Introduction -- 8.2 Regional Occurrences of Gas Hydrate Inferred from Remote Sensing Data -- 8.3 The Gas Hydrate Petroleum System for the Northern Cascadia Margin -- 8.4 Gas Hydrate Saturation Estimates -- 8.5 Gas Vents, Focused Fluid Flow and Shallow Gas Hydrates -- 8.6 Long-Term Observations -- 8.6.1 Gas Emissions at the Seafloor -- 8.6.2 Controlled-Source EM and Seafloor Compliance -- 8.6.3 Borehole In Situ Monitoring -- 8.7 Summary and Conclusions -- Acknowledgements -- References -- 9 Accretionary Wedge Tectonics and Gas Hydrate Distribution in the Cascadia Forearc -- Abstract -- 9.1 Introduction -- 9.2 Data -- 9.3 Results -- 9.4 Summary -- Acknowledgements -- References -- 10 Bottom Simulating Reflections Below the Blake Ridge, Western North Atlantic Margin -- Abstract -- 10.1 Geologic Setting -- 10.2 A Brief History of Blake Ridge Gas Hydrate Research -- 10.3 Blake Ridge BSR Distribution, Character and Dynamics -- 10.3.1 A Dynamic BSR on the Eastern Flank of Blake Ridge -- 10.3.2 Gas Chimneys Extending from BSRs -- 10.3.3 The Role of Sediment Waves in Gas Migration from the BSR -- 10.3.4 The Blake Ridge Diapir -- 10.4 Unanswered Questions and Future Research -- References -- 11 A Review of the Exploration, Discovery and Characterization of Highly Concentrated Gas Hydrate Accumulations in Coarse-Grained Reservoir Systems Along the Eastern Continental Margin of India -- Abstract -- 11.1 Introduction -- 11.2 India National Gas Hydrate Program-Scientific Drilling Expeditions -- 11.3 Representative Gas Hydrate Systems-Krishna-Godavari Basin. , 11.3.1 Krishna-Godavari Basin Geologic Setting -- 11.3.2 NGHP-02 Area C Gas Hydrate System -- 11.3.3 NGHP-02 Area B Gas Hydrate System -- 11.4 Summary -- Acknowledgements -- References -- 12 Ulleung Basin Gas Hydrate Drilling Expeditions, Korea: Lithologic Characteristics of Gas Hydrate-Bearing Sediments -- Abstract -- 12.1 Introduction -- 12.2 Geological Setting of the Ulleung Basin -- 12.3 Overview of the First and Second Ulleung Basin Gas Hydrate Drilling Expeditions (UBGH1 and 2) -- 12.4 Lithologic Characteristics of Gas Hydrate-Bearing Sediments in the Ulleung Basin -- 12.5 Summary -- References -- 13 Bottom Simulating Reflections in the South China Sea -- Abstract -- 13.1 Introduction -- 13.2 Geological Setting and Gas Hydrate Drilling Expeditions -- 13.3 The Characteristics of BSRs Within Various Sediment Environments -- 13.3.1 BSR and Cold Seeps in Taixinan Basin -- 13.3.2 BSRs in the Pearl River Mouth Basin -- 13.3.3 BSRs in the Qiongdongnan Basin -- 13.4 Well Log Anomalies of Different Types of Gas Hydrate -- 13.5 BSR Dynamics and Response to Fluid Migration -- 13.6 Summary -- Acknowledgements -- References -- 14 Gas Hydrate and Fluid-Related Seismic Indicators Across the Passive and Active Margins off SW Taiwan -- Abstract -- 14.1 Introduction -- 14.2 Geological Setting -- 14.3 Seismic Observations -- 14.3.1 Gas Accumulation -- 14.3.2 Fluid Migration -- 14.3.3 Presence of Gas Hydrate -- 14.4 Distribution of the Seismic Indicators and Implications for Understanding the Hydrate System -- 14.5 Summary -- References -- 15 Gas Hydrate Drilling in the Nankai Trough, Japan -- Abstract -- 15.1 Introduction -- 15.2 Discovery of Gas Hydrates and Early Expeditions in the Nankai Trough Area -- 15.3 MITI Exploratory Test Well: Nankai Trough (1999-2000) -- 15.4 METI Multi-well Exploratory Drilling Campaign and Resource Assessments. , 15.4.1 Drilling Operations and Achievements -- 15.4.2 Discovery of the Methane Hydrate Concentration Zone and Resource Assessments -- 15.5 Tests for Gas Production Undertaken in 2013 and 2017 -- 15.5.1 Gas Production Techniques and Site Selection -- 15.5.2 Drilled Boreholes and Data/Sample Acquisitions -- 15.5.3 Production Test Results and Findings -- 15.6 Other Gas Hydrate Occurrences and Resource Evaluation Results -- 15.7 Summary -- Acknowledgements -- References -- 16 Alaska North Slope Terrestrial Gas Hydrate Systems: Insights from Scientific Drilling -- Abstract -- 16.1 Introduction -- 16.2 Alaska North Slope Gas Hydrate Accumulations -- 16.3 Alaska North Slope Gas Hydrate Research Drilling Programs -- 16.3.1 Mount Elbert Gas Hydrate Stratigraphic Test Well -- 16.3.2 Iġnik Sikumi Gas Hydrate Production Test Well -- 16.3.3 Hydrate-01 Stratigraphic Test Well -- 16.4 Alaska North Slope Gas Hydrate Energy Assessments -- 16.5 Summary -- Acknowledgements -- References -- Arctic -- 17 Gas Hydrates on Alaskan Marine Margins -- Abstract -- 17.1 Introduction -- 17.2 Southeastern Alaskan Margin -- 17.3 Aleutian Arc -- 17.3.1 Eastern Aleutian Arc -- 17.3.2 Central Aleutian Arc -- 17.3.3 Western Aleutian Arc -- 17.3.4 Bering Sea -- 17.4 US Beaufort Sea -- 17.5 Summary -- Acknowledgements -- References -- 18 Gas Hydrate Related Bottom-Simulating Reflections Along the West-Svalbard Margin, Fram Strait -- Abstract -- 18.1 Introduction -- 18.2 Geological and Oceanographic Settings -- 18.2.1 Regional Tectonic Setting -- 18.2.2 Sedimentary Setting -- 18.2.3 Oceanographic Setting -- 18.3 BSR Distribution and Characteristics Within Various Sediment Types -- 18.3.1 Regional Extent of the BSRs -- 18.4 Evidence for Gas Migration from Deep and Shallow Sources -- 18.4.1 The Gas Sources -- 18.4.2 Vertical Fluid Migration Features -- 18.5 Inferred Gas Hydrate Distribution. , 18.6 BSR Dynamics and Response to Natural Changes in the Environment.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Cham : Springer International Publishing | Cham : Imprint: Springer
    Keywords: Oceanography. ; Water. ; Fossil fuels. ; Physical geography. ; Business. ; Management science. ; Erde ; Kontinentalrand ; Gashydrate ; Offshore-Vorkommen ; Geologie ; Seismik ; Schelf ; Methanlagerstätte ; Erdgasgeologie ; Gashydrate ; Seismische Prospektion ; Vorkommen
    Description / Table of Contents: Part I. A History of gas hydrate research -- Chapter 1. Gas Hydrate Research: From the Laboratory to the Pipeline -- Chapter 2. Shallow gas hydrates near 64° N, off Mid-Norway: Concerns regarding drilling and production technologies -- Chapter 3. Finding and using the world’s gas hydrates -- Part II. Gas Hydrate Fundamentals -- Chapter 4. Seismic rock physics of gas-hydrate bearing sediments -- Chapter 5. Estimation of gas hydrates in the pore space of sediments using inversion methods -- Chapter 6. Electromagnetic applications in methane hydrate reservoirs -- Part III. Gas Hydrate Drilling for Research and Natural Resources -- Chapter 7. Hydrate Ridge - A gas hydrate system in a subduction zone setting -- Chapter 8. Northern Cascadia Margin gas hydrates – Regional geophysical surveying, IODP drilling Leg 311 and cabled observatory monitoring -- Chapter 9. Accretionary wedge tectonics and gas hydrate distribution in the Cascadia forearc -- Chapter 10. Bottom Simulating Reflections below the Blake Ridge, western North Atlantic Margin -- Chapter 11. A review of the exploration, discovery, and characterization of highly concentrated gas hydrate accumulations in coarse-grained reservoir systems along the Eastern Continental Margin of India -- Chapter 12. Ulleung Basin Gas Hydrate Drilling Expeditions, Korea: Lithologic characteristics of gas hydrate-bearing sediments -- Chapter 13. Bottom simulating reflections in the South China Sea -- Chapter 14. Gas hydrate and fluid related seismic indicators across the passive and active margins off SW Taiwan -- Chapter 15. Gas Hydrate Drilling in the Nankai Trough, Japan -- Chapter 16. Alaska North Slope Terrestrial Gas Hydrate Systems: Insights from Scientific Drilling -- Part IV -- Arctic -- Chapter 17. Gas Hydrates on Alaskan Marine Margins -- Chapter 18. Gas Hydrate related bottom-simulating reflections along the west-Svalbard margin, Fram Strait -- Chapter 19. Occurrence and distribution of bottom simulating reflections in the Barents Sea -- Chapter 20. Svyatogor Ridge - A gas hydrate system driven by crustal scale processes -- Chapter 21. Gas hydrate potential in the Kara Sea -- Part V. Greenland and Norwegian Sea -- Chapter 22. Geophysical indications of gas hydrate occurrence on the Greenland continental margins -- Chapter 23. Gas hydrates in the Norwegian Sea -- Part VI. North Atlantic. Chapter 24. U.S. Atlantic Margin Gas Hydrates -- Chapter 25. Gas Hydrates and submarine sediment mass failure: A case study from Sackville Spur, offshore Newfoundland -- Chapter 26. Bottom Simulating Reflections and Seismic Phase Reversals in the Gulf of Mexico -- Chapter 27. Insights into gas hydrate dynamics from 3D seismic data, offshore Mauritania -- Part VII. South Atlantic -- Chapter 28. Distribution and Character of Bottom Simulating Reflections in the Western Caribbean Offshore Guajira Peninsula, Colombia -- Chapter 29. Gas hydrate systems on the Brazilian continental margin -- Chapter 30. Gas hydrate on the southwest African continental margin -- Chapter 31. Shallow gas hydrates associated to pockmarks in the Northern Congo deep-sea fan, SW Africa -- Part VIII. Pacific -- Chapter 32. Gas hydrate-bearing province off eastern Sakhalin slope -- Chapter 33. Tectonic BSR Hypothesis in the Peruvian margin: A forgotten way to see marine gas hydrate systems at convergent margins -- Chapter 34. Gas hydrate and free gas along the Chilean Continental Margin -- Chapter 35. New Zealand’s Gas Hydrate Systems -- Part IX. Indic -- Chapter 36. First evidence of bottom simulation reflectors in the western Indian Ocean offshore Tanzania -- Part X. Mediterranean Sea -- Chapter 37. A Gas Hydrate System of Heterogenous Character in the Nile Deep-Sea Fan -- Part XI. Black Sea -- Chapter 38. Gas hydrate accumulations in the Black Sea -- Part XII. Lake Baikal -- Chapter 39. The position of gas hydrates in the sedimentary strata and in the geological structure of Lake Baikal -- Part XIII. Antarctic -- Chapter 40. Bottom Simulating Reflector in the western Ross Sea Antarctica -- Chapter 41. Bottom Simulating Reflectors along the Scan Basin, a deep-sea gateway between the Weddell Sea (Antarctica) and Scotia Sea -- Chapter 42. Bottom Simulating Reflections in Antarctica -- Part XIV. Where Gas Hydrate Dissociates Seafloor Microhabitats Flourish. Chapter 43. Integrating fine-scale habitat mapping and pore water analysis in cold seep research: A case study from the SW Barents Sea.
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(XXI, 515 p. 311 illus., 296 illus. in color.)
    Edition: 1st ed. 2022.
    ISBN: 9783030811860
    Series Statement: Springer eBook Collection
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Geochemistry, geophysics, geosystems, Hoboken, NJ : Wiley, 2000, 10(2009), 11, 1525-2027
    In: volume:10
    In: year:2009
    In: number:11
    In: extent:21
    Description / Table of Contents: We report on a bathymetric mapping and remotely operated vehicle surveys along the 100600 m region offshore Oregon from 43ʿ50?N to 44°18'N. We interpret our results in light of available geophysical data, published geotectonic models, and analogous observations of fluid venting and carbonate deposition from 44°30'N to 45°00'N. The methane seepage is defined by juxtaposition of a young prism, where methane is generated by bacterial activity and its release is modulated by gas hydrate dynamics, against older sequences that serve as a source of thermogenic hydrocarbons that vent in the shelf. We hypothesize that collision of a buried ridge with the Siletz Terrane results in uplift of gas hydrate bearing sediments in the oncoming plate and that the resulting decrease in pressure leads to gas hydrate dissociation and methane exolution, which, in turn, may facilitate slope failure. Oxidation of the released methane results in precipitation of carbonates that are imaged as high backscatter along a 550 ± 60 m benthic corridor.
    Type of Medium: Online Resource
    Pages: 21 , Ill., graph. Darst
    ISSN: 1525-2027
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Type of Medium: Electronic Resource
    Pages: 1 CD-ROM , 1 Booklet (XX, 40, 24 S.)
    Edition: [Elektronische Ressource]
    Series Statement: Proceedings of the ocean drilling program 204.2002
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Keywords: Oceanography ; Water ; Hydrology ; Cogeneration of electric power and heat ; Fossil fuels ; Physical geography ; Business ; Management science ; Gashydrate ; Simulation ; Sediment ; Kontinentalrand ; Methanhydrate
    Type of Medium: Book
    Pages: XXI, 514, C3 Seiten , Illustrationen, Karten
    Edition: Corrected Publication 2022
    ISBN: 3030811859 , 9783030811853
    DDC: 551.46
    Language: English
    Note: Literaturangaben
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Marine geophysical researches 5 (1981), S. 69-78 
    ISSN: 1573-0581
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract A model representing the coupling of an ocean-bottom seismometer (OBS) to the seafloor as a mass-spring-dashpot system satisfactorily explains the results of transient tests performed on different instruments during the Lopez Island intercomparison test. In this paper, we compare the results obtained for the MIT OBS at Lopez Island to results from similar tests at a dockside site at Woods Hole, Massachusetts. The vertical instrument response at the Lopez Island site shows a highly damped resonance at a frequency of 22 Hz, whereas the response at the Woods Hole site shows a marked resonance at 13 Hz. The difference between the responses at the two sites can be qualitatively attributed to the difference between the surficial sediments.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Marine geophysical researches 16 (1994), S. 91-103 
    ISSN: 1573-0581
    Keywords: Ocean-bottom seismographs ; coupling seismographs to sea floor
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract A series of transient tests were conducted to determine the seafloor coupling characteristics of a new ocean-bottom seismometer (OBS) developed for the United States Office of Naval Research (ONR). The OBS comprises a large recording package and a separate sensor package that is deployed from the recording package. In addition to the coupling characteristics of both the sensor and the recording packages, the seismic energy radiated from the main recording package as a result of motion of the recording package was measured. The observed vertical coupling resonances of both the recording package and the sensor package are in good agreement with those predicted by a simple model of soil-structure interaction. The most important result of this study is that significant energy is radiated from the recording package in response to horizontal motions of the recording package. When the sensor package is 1 m from the recording package, the amplitude of the recorded signal is similar to that recorded in the recording package. In the field, this effect will result in distortion of seismic signals and increased background noise recorded by the sensor package if the recording package is disturbed by seafloor currents or biological activity. The amplitude of this signal attenuates by approximately a factor of two as sensor/recorder separation is increased from 1 to 6 m, suggesting that an improved response can be achieved by increasing the separation between the recording package and the sensors. This effect is much less severe for vertical disturbances of the recording package.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy and the Woods Hole Oceanographic Institution February 1982
    Description: In this thesis, seismic waves generated by sources ranging from 2.7 kg shots of TNT to magnitude 5 earthquakes are studied in order to determine the seismic activity and crustal structure of the Orozco transform fault. Most of the data were collected by a network of 29 ocean bottom seismometers (OBS) and hydrophones (OBH) which were deployed as part of project ROSE (Rivera Ocean Seismic Experiment). Additional information is provided by magnetic anomaly and bathymetric data collected during and prior to ROSE and by teleseismic earthquakes recorded by the WWSSN (Worldwide Seismic Station Network). In Chapter II, the tectonic setting, bathymetry and teleseismic history of the Orozco Fracture Zone are summarized. Covering an area of 90 x 90 km which includes ridges and troughs trending both parallel and perpendicular to the present spreading direction (approximately east-west), the bathymetry of the transform portion of the fracture zone does not resemble that of other transform faults which have been studied in detail. A detailed study of one of the largest teleseismic earthquakes (mb=5.1) indicates right lateral strike-slip faulting with a strike parallel to the present spreading direction and a focal depth of less than 5 km. The moment sum from teleseismic earthquakes suggests an average fault width of at most a few kilometers. Because the teleseismic earthquake locations are too imprecise to define the present plate boundary and the magnetic anomaly data are too sparse to resolve the recent tectonic history, more questions are raised than are answered by the results in this chapter. These questions provide the focus for the study of the ROSE data. Chapter III contains an examination of the transfer function between seafloor motion and data recorded by the MIT OBS. The response of the recording system is determined and the coupling of the OBS to the seafloor during tests at two nearshore sites is analysed. Applying these results to the ROSE data, we conclude that the ground motion in the absence of the instrument can be adequately determined for at least one of the MIT OBS deployed during ROSE. Hypocentral parameters for 70 earthquakes, calculated for an assumed laterally homogeneous velocity structure which was adapted from the results of several refraction surveys in the area, are presented in Chapter IV. Because of the large number of stations in the ROSE network, the epicentral locations, focal depths and source mechanisms are determined with a precision unprecedented in marine microseismic work. Relative to the assumed model, most horizontal errors are less than ±1 km; vertical errors are somewhat larger. All epicenters are within the transform region of the Orozco Fracture Zone. About half of the epicenters define a narrow line of activity parallel to the spreading direction and situated along a deep topographic trough which forms the northern boundary of the transform zone (region 1). Most well determined depths are very shallow (〈4km) and no shallowing of activity is observed as the rise-transform intersection is approached. In fact, the deepest depths (4-10km) are for earthquakes within 10 km of the intersection; these apparent depth differences are supported by the waveforms recorded a t the MIT OBS. First motion polarities for all but two of the earthquakes in region 1 are compatible with right lateral strike-slip faulting along a nearly vertical plane striking parallel to the spreading direct ion. Another zone of activity is observed in the central part of the transform (region 2). The apparent horizontal and vertical distribution of activity is more scattered than for the first group and the first motion radiation patterns of these events do not appear to be compatible with any known fault mechanism. No difference can be resolved between the stress drops or b values in the two regions. In Chapter V, lateral variations in the crustal structure within the transform region are determined and the effect of these structures on the results of the previous chapter is evaluated. Several data sources provide information on different aspects of the crustal structure. Incident angles and azimuths of body waves from shots and earthquakes measured at one of the MIT OSS show systematic deflections from the angles expected for a laterally homogeneous structure. The effect of various factors on the observed angles and azimuths is discussed and it is concluded that at least some of the deflection reflects regional lateral velocity heterogeneity. Structures which can explain the observations are found by tracing rays through three dimensional velocity grids. High velocities are inferred at upper mantle depths beneath a shallow, north-south trending ridge to the west of the OBS, suggesting that the crust under the ridge is no thicker, and perhaps thinner, than the surrounding crust. Observations from sources in region 2 suggest the presence of a low velocity zone in the central transform between the sources and the receiver. That the presence of such a body provides answers to several of the questions raised in Chapter IV about the hypocenters and mechanisms of earthquakes in region 2 is circumstantial evidence supporting this model. These proposed structures do not significantly affect the hypocenters and fault plane solutions for sources in region 1. The crustal velocity structure beneath the north-south trending ridges in the central transform and outside of the transform zone is determined by travel time and amplitude modeling of the data from several lines of small shots recorded at WHOI OBH. Outside of the transform zone, a velocity-depth structure typical of oceanic crust throughout the world oceans is found from three unreversed profiles: a 1 to 2 km thick layer in which the velocity increases from about 3 to 6.7 km/sec overlies a 4 to 4.5 km thick layer with a nearly constant velocity of 6.8 km/sec. A reversed profile over one of the north-south trending ridges, on the other hand, indicates an anomalous velocity structure with a gradient of 0.5 sec-1 throughout most of the crust ( from 5.25 km/sec to 7.15 km/sec over 3.5 km). A decrease in the gradient at the base of the crust to about 0.1 sec-1 and a thin, higher gradient layer in the upper few hundred meters are also required to fit the travel time and amplitude data. A total crustal thickness of about 5.4 km is obtained. An upper mantle velocity of 8.0 to 8.13 km/sec throughout much of the transform zone is determined from travel times of large shots of TNT recorded at MIT and WHOI instruments. "Relocations" of the large shots relative to the velocity model assumed in Chapter IV support the conclusion from the ray tracing that results from region 2 may be systematically biased because of lateral velocity heterogeneity whereas results from region 1 are not affected. In the last chapter, the results on crustal structure and seismicity are combined in order to define the present plate boundary and to speculate on the history of the present configuration.
    Description: This research was supported by the Office of Naval Research, under contracts N00014-75-C-0291 and N00014-80-C-0273
    Keywords: Seismic waves ; Ocean bottom ; Faults
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-26
    Description: Author Posting. © The Oceanography Society, 2014. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 27, no. 2 (2014): 138-150, doi:10.5670/oceanog.2014.49.
    Description: Increasing public awareness that the Cascadia subduction zone in the Pacific Northwest is capable of great earthquakes (magnitude 9 and greater) motivates the Cascadia Initiative, an ambitious onshore/offshore seismic and geodetic experiment that takes advantage of an amphibious array to study questions ranging from megathrust earthquakes, to volcanic arc structure, to the formation, deformation and hydration of the Juan De Fuca and Gorda Plates. Here, we provide an overview of the Cascadia Initiative, including its primary science objectives, its experimental design and implementation, and a preview of how the resulting data are being used by a diverse and growing scientific community. The Cascadia Initiative also exemplifies how new technology and community-based experiments are opening up frontiers for marine science. The new technology—shielded ocean bottom seismometers—is allowing more routine investigation of the source zone of megathrust earthquakes, which almost exclusively lies offshore and in shallow water. The Cascadia Initiative offers opportunities and accompanying challenges to a rapidly expanding community of those who use ocean bottom seismic data.
    Description: The Cascadia Initiative is supported by the National Science Foundation; the CIET is supported under grants OCE- 1139701, OCE-1238023, OCE‐1342503, OCE-1407821, and OCE-1427663 to the University of Oregon.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-02-08
    Description: Key Points: Multibeam bathymetric and seismic reflection data image the structure of the North Chilean marine forearc and the oceanic Nazca plate The structural character and tectonic configuration of the offshore forearc and the oceanic plate change significantly along the margin The derived pattern of permanent deformation may hold information for studying seismicity or other types of short term deformation New multibeam bathymetry allows an unprecedented view of the tectonic regime and its along‐strike heterogeneity of the North Chilean marine forearc and the oceanic Nazca Plate between 19‐22.75°S. Combining bathymetric and backscatter information from the multibeam data with sub‐bottom profiler and published and previously unpublished legacy seismic reflection lines, we derive a tectonic map. The new map reveals a middle and upper‐slope configuration dominated by pervasive extensional faulting, with some faults outlining a 〉500 km long ridge that may represent the remnants of a Jurassic or pre‐Jurassic magmatic arc. Lower slope deformation is more variable and includes slope‐failures, normal faulting, re‐entrant embayments, and NW‐SE trending anticlines and synclines. This complex pattern likely results from the combination of subducting lower‐plate topography, gravitational forearc collapse, and the accumulation of permanent deformation over multiple earthquake cycles. We find little evidence for widespread fluid seepage despite a highly faulted upper‐plate. An explanation could be a lack of fluid sources due to the sediment starved nature of the trench and most of the upper‐plate in vicinity of the hyper‐arid Atacama Desert. Changes in forearc architecture partly correlate to structural variations of the oceanic Nazca Plate, which is dominated by the spreading‐related abyssal hill fabric and is regionally overprinted by the Iquique Ridge. The ridge collides with the forearc around 20‐21°S. South of the ridge‐forearc intersection, bending‐related horst‐and‐grabens result in vertical seafloor offsets of hundreds of meters. To the north, plate‐bending is accommodated by reactivation of the paleo‐spreading fabric and new horst‐and‐grabens do not develop.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...