GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2024-02-07
    Description: A marine sediment record from the central Bering Sea, spanning the last 20 thousand years (ka), was studied to unravel the depositional history with regard to terrigenous sediment supply and biogenic sedimentation. Methodic approaches comprised the inference of accumulation rates of siliciclastic and biogenic components, grain-size analysis, and (clay) mineralogy, as well as paleoclimatic modelling. Changes in the depositional history provides insight into land-ocean linkages of paleoenvironmental changes. During the finale of the Last Glacial Maximum, the depositional environment was characterized by hemipelagic background sedimentation. A marked change in the terrigenous sediment provenance during the late Heinrich 1 Stadial (15.7–14.5 ka), indicated by increases in kaolinite and a high glaciofluvial influx of clay, gives evidence of the deglaciation of the Brooks Range in the hinterland of Alaska. This meltwater pulse also stimulated the postglacial onset of biological productivity. Glacial melt implies regional climate warming during a time of widespread cooling on the northern hemisphere. Our simulation experiment with a coupled climate model suggests atmospheric teleconnections to the North Atlantic, with impacts on the dynamics of the Aleutian Low system that gave rise to warmer winters and an early onset of spring during that time. The late deglacial period between 14.5 and 11.0 ka was characterized by enhanced fluvial runoff and biological productivity in the course of climate amelioration, sea-level rise, seasonal sea-ice retreat, and permafrost thaw in the hinterland. The latter processes temporarily stalled during the Younger Dryas stadial (12.9-11.7 ka) and commenced again during the Preboreal (earliest Holocene), after 11.7 ka. High river runoff might have fertilized the Bering Sea and contributed to enhanced upper ocean stratification. Since 11.0 ka, advanced transgression has shifted the coast line and fluvial influence of the Yukon River away from the study site. The opening of the Bering Strait strengthened contour currents along the continental slope, leaving behind winnowed sand-rich sediments through the early to mid-Holocene, with non-deposition occurring since about 6.0 ka.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Meteorological Society
    In:  EPIC3Journal of Climate, American Meteorological Society, 35(23), pp. 7811-7831, ISSN: 0894-8755
    Publication Date: 2023-06-23
    Description: Numerical simulations allow us to gain a comprehensive understanding of the underlying mechanisms of past, present, and future climate changes. The mid-Holocene (MH) and the last interglacial (LIG) were the two most recent warm episodes of Earth’s climate history and are the focus of paleoclimate research. Here, we present results of MH and LIG simulations with two versions of the state-of-the-art Earth system model AWI-ESM. Most of the climate changes in MH and LIG compared to the preindustrial era are agreed upon by the two model versions, including 1) enhanced seasonality in surface temperature that is driven by the redistribution of seasonal insolation; 2) a northward shift of the intertropical convergence zone (ITCZ) and tropical rain belt; 3) a reduction in annual mean Arctic sea ice concentration; 4) weakening and northward displacement of the Northern Hemisphere Hadley circulation, which is related to the decrease and poleward shift of the temperature gradient from the subtropical to the equator in the Northern Hemisphere; 5) a westward shift of the Indo-Pacific Walker circulation due to anomalous warming over the Eurasia and North Africa during boreal summer; and 6) an expansion and intensification of Northern Hemisphere summer monsoon rainfall, with the latter being dominated by the dynamic component of moisture budget (i.e., the strengthening of wind circulation). However, the simulated responses of the Atlantic meridional overturning circulation (AMOC) in the two models yield different results for both the LIG and the MH. AMOC anomalies between the warm interglacial and preindustrial periods are associated with changes in North Atlantic westerly winds and stratification of the water column at the North Atlantic due to changes in ocean temperature, salinity, and density.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Frontiers
    In:  EPIC3Frontiers in Climate, Frontiers, 6, pp. 1345763-1345763, ISSN: 2624-9553
    Publication Date: 2024-04-22
    Description: While the Arctic's accelerated warming and sea ice decline have been associated with Eurasian cooling, debates persist between those attributing this to sea ice retreat and those to internal variability. Our study examines the association between autumn sea ice variability over the Barents-Kara Seas and extreme cold winters in Europe. Using the observational data and composite analysis, we explore the interannual variability and the potential linkage between sea ice and atmospheric circulation patterns. It reveals a correlation with shifts toward a negative phase of North Atlantic Oscillation and more frequent episodes of the atmospheric blocking over Greenland and the North Atlantic. Furthermore, the negative phase of the North Atlantic Oscillation and enhanced blocking are closely related and mutually reinforcing, shaping the spatial distribution of cold anomalies over much of the European continent. Our results suggest a link between the unusual decrease in Barents-Kara Sea ice during autumn and the occurrence of intense European weather extremes in subsequent winter months, emphasizing the need for delving deeper into this relationship on monthly time scales to enhance our predictive capabilities for midlatitude extreme events.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...