GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AGU (American Geophysical Union)  (9)
  • Nature Research  (6)
  • Frontiers  (4)
  • Springer  (4)
  • Inter Research  (1)
  • 2020-2024  (24)
  • 1
    Publication Date: 2023-02-08
    Description: Ecosystem connectivity is an essential consideration for marine spatial planning of competing interests in the deep sea. Immobile, adult communities are connected through freely floating larvae, depending on new recruits for their health and to adapt to external pressures. We hypothesize that the vertical swimming ability of deep-sea larvae, before they permanently settle at the bottom, is one way larvae can control dispersal. We test this hypothesis with more than 3x108 simulated particles with a range of active swimming behaviours embedded within the currents of a high-resolution ocean model. Despite much stronger horizontal ocean currents, vertical swimming of simulated larvae can have an order of magnitude impact on dispersal. These strong relationships between larval dispersal, pathways, and active swimming demonstrate that lack of data on larval behaviour traits is a serious impediment to modelling deep-sea ecosystem connectivity; this uncertainty greatly limits our ability to develop ecologically coherent marine protected area networks.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-08
    Description: Rapid increases in upper 700‐m Indian Ocean heat content (IOHC) since the 2000s have focused attention on its role during the recent global surface warming hiatus. Here, we use ocean model simulations to assess distinct multidecadal IOHC variations since the 1960s and explore the relative contributions from wind stress and buoyancy forcing regionally and with depth. Multidecadal wind forcing counteracted IOHC increases due to buoyancy forcing from the 1960s to the 1990s. Wind and buoyancy forcing contribute positively since the mid‐2000s, accounting for the drastic IOHC change. Distinct timing and structure of upper ocean temperature changes in the eastern and western Indian Ocean are linked to the pathway how multidecadal wind forcing associated with the Interdecadal Pacific Oscillation is transmitted and affects IOHC through local and remote winds. Progressive shoaling of the equatorial thermocline—of importance for low‐frequency variations in Indian Ocean Dipole occurrence—appears to be dominated by multidecadal variations in wind forcing.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-02-08
    Description: The Atlantic meridional overturning circulation (AMOC) represents the zonally integrated stream function of meridional volume transport in the Atlantic Basin. The AMOC plays an important role in transporting heat meridionally in the climate system. Observations suggest a heat transport by the AMOC of 1.3 PW at 26°N—a latitude which is close to where the Atlantic northward heat transport is thought to reach its maximum. This shapes the climate of the North Atlantic region as we know it today. In recent years there has been significant progress both in our ability to observe the AMOC in nature and to simulate it in numerical models. Most previous modeling investigations of the AMOC and its impact on climate have relied on models with horizontal resolution that does not resolve ocean mesoscale eddies and the dynamics of the Gulf Stream/North Atlantic Current system. As a result of recent increases in computing power, models are now being run that are able to represent mesoscale ocean dynamics and the circulation features that rely on them. The aim of this review is to describe new insights into the AMOC provided by high-resolution models. Furthermore, we will describe how high-resolution model simulations can help resolve outstanding challenges in our understanding of the AMOC.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-02-08
    Description: Purpose of Review: Assessment of the impact of ocean resolution in Earth System models on the mean state, variability, and future projections and discussion of prospects for improved parameterisations to represent the ocean mesoscale. Recent Findings: The majority of centres participating in CMIP6 employ ocean components with resolutions of about 1 degree in their full Earth System models (eddy-parameterising models). In contrast, there are also models submitted to CMIP6 (both DECK and HighResMIP) that employ ocean components of approximately 1/4 degree and 1/10 degree (eddy-present and eddy-rich models). Evidence to date suggests that whether the ocean mesoscale is explicitly represented or parameterised affects not only the mean state of the ocean but also the climate variability and the future climate response, particularly in terms of the Atlantic meridional overturning circulation (AMOC) and the Southern Ocean. Recent developments in scale-aware parameterisations of the mesoscale are being developed and will be included in future Earth System models. Summary: Although the choice of ocean resolution in Earth System models will always be limited by computational considerations, for the foreseeable future, this choice is likely to affect projections of climate variability and change as well as other aspects of the Earth System. Future Earth System models will be able to choose increased ocean resolution and/or improved parameterisation of processes to capture physical processes with greater fidelity.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-01-07
    Description: The southern African subcontinent and its surrounding oceans accommodate globally unique ecoregions, characterized by exceptional biodiversity and endemism. This diversity is shaped by extended and steep physical gradients or environmental discontinuities found in both ocean and terrestrial biomes. The region’s biodiversity has historically been the basis of life for indigenous cultures and continues to support countless economic activities, many of them unsustainable, ranging from natural resource exploitation, an extensive fisheries industry and various forms of land use to nature-based tourism. Being at the continent’s southern tip, terrestrial species have limited opportunities for adaptive range shifts under climate change, while warming is occurring at an unprecedented rate. Marine climate change effects are complex, as warming may strengthen thermal stratification, while shifts in regional wind regimes influence ocean currents and the intensity of nutrient-enriching upwelling. The flora and fauna of marine and terrestrial southern African biomes are of vital importance for global biodiversity conservation and carbon sequestration. They thus deserve special attention in further research on the impacts of anthropogenic pressures including climate change. Excellent preconditions exist in the form of long-term data sets of high quality to support scientific advice for future sustainable management of these vulnerable biomes.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-07
    Description: Warming of the North Atlantic region in climate history often was associated with massive melting of the Greenland Ice Sheet. To identify the meltwater’s impacts and isolate these from internal variability and other global warming factors, we run single-forcing simulations including small ensembles using three complex climate models differing only in their ocean components. In 200-year long pre-industrial climate simulations, we identify robust consequences of abruptly increasing Greenland runoff by 0.05 Sv: sea-level rise of 44±10 cm, subpolar North Atlantic surface cooling of 0.7˚C and a moderate AMOC decline of 1.1–2.0 Sv. The latter two emerge in under three decades—and reverse on the same timescale after the perturbation ends in year 100. The ocean translates the step-change perturbation into a multi-decadal to centennial signature in the deep overturning circulation. In all simulations, internal variability creates notable uncertainty in estimating trends, time of emergence and duration of the response.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-07
    Description: Agulhas leakage, the transport of warm and salty waters from the Indian Ocean into the South Atlantic, has been suggested to increase under anthropogenic climate change, due to strengthening Southern Hemisphere westerly winds. The resulting enhanced salt transport into the South Atlantic may counteract the projected weakening of the Atlantic overturning circulation through warming and ice melting. Here we combine existing and new observation- and model-based Agulhas leakage estimates to robustly quantify its decadal evolution since the 1960s. We find that Agulhas leakage very likely increased between the mid-1960s and mid-1980s, in agreement with strengthening winds. Our models further suggest that increased leakage was related to enhanced transport outside eddies and coincided with strengthened Atlantic overturning circulation. Yet, it appears unlikely that Agulhas leakage substantially increased since the 1990s, despite continuously strengthening winds. Our results stress the need to better understand decadal leakage variability to detect and predict anthropogenic trends.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-02-07
    Description: In highly fragmented and relatively stable cold-seep ecosystems, species are expected to exhibit high migration rates and long-distance dispersal of long-lived pelagic larvae to maintain genetic integrity over their range. Accordingly, several species inhabiting cold seeps are widely distributed across the whole Atlantic Ocean, with low genetic divergence between metapopulations on both sides of the Atlantic Equatorial Belt (AEB, i.e. Barbados and African/European margins). Two hypotheses may explain such patterns: (i) the occurrence of present-day gene flow or (ii) incomplete lineage sorting due to large population sizes and low mutation rates. Here, we evaluated the first hypothesis using the cold seep mussels Gigantidas childressi, G. mauritanicus, Bathymodiolus heckerae and B. boomerang. We combined COI barcoding of 763 individuals with VIKING20X larval dispersal modelling at a large spatial scale not previously investigated. Population genetics supported the parallel evolution of Gigantidas and Bathymodiolus genera in the Atlantic Ocean and the occurrence of a 1-3 Million-year-old vicariance effect that isolated populations across the Caribbean Sea. Both population genetics and larval dispersal modelling suggested that contemporary gene flow and larval exchanges are possible across the AEB and the Caribbean Sea, although probably rare. When occurring, larval flow was eastward (AEB - only for B. boomerang) or northward (Caribbean Sea - only for G. mauritanicus). Caution is nevertheless required since we focused on only one mitochondrial gene, which may underestimate gene flow if a genetic barrier exists. Non-negligible genetic differentiation occurred between Barbados and African populations, so we could not discount the incomplete lineage sorting hypothesis. Larval dispersal modelling simulations supported the genetic findings along the American coast with high amounts of larval flow between the Gulf of Mexico (GoM) and the US Atlantic Margin, although the Blake Ridge population of B. heckerae appeared genetically differentiated. Overall, our results suggest that additional studies using nuclear genetic markers and population genomics approaches are needed to clarify the evolutionary history of the Atlantic bathymodioline mussels and to distinguish between ongoing and past processes.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-02-07
    Description: The Makassar Strait, the main passageway of the Indonesian Throughflow (ITF), is an important component of Indo-Pacific climate through its inter-basin redistribution of heat and freshwater. Observational studies suggest that wind-driven freshwater advection from the marginal seas into the Makassar Strait modulates the strait's surface transport. However, direct observations are too short (〈15 years) to resolve variability on decadal timescales. Here we use a series of global ocean simulations to assess the advected freshwater contributions to ITF transport across a range of timescales. The simulated seasonal and interannual freshwater dynamics are consistent with previous studies. On decadal timescales, we find that wind-driven advection of South China Sea (SCS) waters into the Makassar Strait modulates upper-ocean ITF transport. Atmospheric circulation changes associated with Pacific decadal variability appear to drive this mechanism via Pacific lower-latitude western boundary current interactions that affect the SCS circulation. Key Points: - A global ocean model is used to show how freshwater impacts the decadal variability of transport through the main Indonesian Throughflow pathway - Wind-driven advection of South China Sea freshwater induces an upstream pressure gradient that reduces transport - Freshwater input is modulated by atmospheric circulation changes associated with Pacific decadal variability
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-02-07
    Description: Deep convection and associated deep water formation are key processes for climate variability, since they impact the oceanic uptake of heat and trace gases and alter the structure and strength of the global overturning circulation. For long, deep convection in the subpolar North Atlantic was thought to be confined to the central Labrador Sea in the western subpolar gyre (SPG). However, there is increasing observational evidence that deep convection also has occurred in the eastern SPG south of Cape Farewell and in the Irminger Sea, in particular, in 2015–2018. Here we assess this recent event in the context of the temporal evolution of spatial deep convection patterns in the SPG since the mid-twentieth century, using realistic eddy-rich ocean model simulations. These reveal a large interannual variability with changing contributions of the eastern SPG to the total deep convection volume. Notably, in the late 1980s to early 1990s, the period with highest deep convection intensity in the Labrador Sea related to a persistent positive phase of the North Atlantic Oscillation, the relative contribution of the eastern SPG was small. In contrast, in 2015–2018, deep convection occurred with an unprecedented large relative contribution of the eastern SPG. This is partly linked to a smaller north-westward extent of deep convection in the Labrador Sea compared to previous periods of intensified deep convection, and may be a first fingerprint of freshening trends in the Labrador Sea potentially associated with enhanced Greenland melting and the oceanic advection of the 2012–2016 eastern North Atlantic fresh anomaly.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: video
    Format: video
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...