GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Publikationsart
Verlag/Herausgeber
Erscheinungszeitraum
  • 1
    Publikationsdatum: 2024-01-07
    Beschreibung: The southern African subcontinent and its surrounding oceans accommodate globally unique ecoregions, characterized by exceptional biodiversity and endemism. This diversity is shaped by extended and steep physical gradients or environmental discontinuities found in both ocean and terrestrial biomes. The region’s biodiversity has historically been the basis of life for indigenous cultures and continues to support countless economic activities, many of them unsustainable, ranging from natural resource exploitation, an extensive fisheries industry and various forms of land use to nature-based tourism. Being at the continent’s southern tip, terrestrial species have limited opportunities for adaptive range shifts under climate change, while warming is occurring at an unprecedented rate. Marine climate change effects are complex, as warming may strengthen thermal stratification, while shifts in regional wind regimes influence ocean currents and the intensity of nutrient-enriching upwelling. The flora and fauna of marine and terrestrial southern African biomes are of vital importance for global biodiversity conservation and carbon sequestration. They thus deserve special attention in further research on the impacts of anthropogenic pressures including climate change. Excellent preconditions exist in the form of long-term data sets of high quality to support scientific advice for future sustainable management of these vulnerable biomes.
    Materialart: Book chapter , NonPeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2019-07-17
    Beschreibung: It has recently been realized that the Arctic undergoes drastic changes, probably resulting from global change induced processes. This acts on the cycling of matter and on biogenic elements in the Arctic Ocean having feedback mechanisms with the global climate, for example by interacting with atmospheric trace gas concentration. A contemporary budget for biogenic elements as well as suspended matter for the Arctic Ocean as a baseline for comparison with effects of further global change is, thus, needed. Available budgets are based on the late Holocene sedimentary record and are therefore quiet different from the present which has already been affected by the intense anthropogenic activity of the last centuries.We calculated a contemporary suspended matter and organic carbon budget for the Kara Sea utilizing the numerous available data from the recent literature as well as our own data from Russian-German SIRRO (Siberian River Run-off) expeditions. For calculation of the budgets we used a multi-box model to simplify the Kara Sea shelf and estuary system: input was assumed to comprise riverine and eolian input as well as coastal erosion, output was assumed to consist of sedimentation and export to the Arctic Ocean. Exchange with the adjacent seas was considered in our budget, and primary production as well as recycling of organic material was taken into account. According to our calculations, about 18.5x106 t yr-1 of sediments and 0.37x106 t yr-1 of organic carbon are buried in the estuaries, whereas 20.9x106 t yr-1 sediment and 0.31x106 t yr-1 organic carbon are buried on the shelf. Most sources and sinks of our organic carbon budget of the Kara Sea are in the same order of magnitude, making it a region very sensitive to further changes.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2019-07-17
    Beschreibung: The Ob and Yenisei Rivers account for more than one-third of the total fresh water supply to the Arctic Ocean. In the past, their sediment load and particulate organic carbon (POC) discharge into the Kara Sea has been measured at stations in the hinterland far south of the estuaries. Suspended matter has been sampled in the estuaries and southern Kara Sea within the framework of the joint RussianGerman "SIRRO" program (Siberian River Run-Off), allowing a reliable new estimate of fluxes from the rivers into the Kara Sea. Our estimates of annual supplies of sediment (3.76x10^6 t), particulate organic carbon(0.27x10^6 t) and particulate nitrogen (PN) (0.027x10^6 t) from the Ob River to the Kara Sea are lower than earlier estimates from the northernmost gauging station in the hinterland due to deposition of particulate matter in the Ob Bay. On the other hand, our estimates of the Yeniseis annual sediment (5.03x10^6 t), particulate organic carbon (0.57x10^6 t) and particulate nitrogen (0.084x10^6 t) supplies to the Kara Sea are probably too high, as they suggest a pure bypass system in the investigated area. We differentiate between an area of recent deposition in the south of the Kara Sea and an area of recent organic matter degradation further north.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2019-07-16
    Beschreibung: The Kara Sea is one of the arctic marginal seas strongly influenced by fresh water and river suspension. The highlyseasonal discharge by the two major rivers Yenisei and Ob induces seasonal changes in hydrography, sea surfacetemperature, ice cover, primary production and sedimentation. In order to obtain a seasonal pattern of sedimentation inthe Kara Sea, sediment traps were deployed near the river mouth of the Yenisei (Yen) as well as in the central Kara Sea(Kara) within the framework of the GermanRussian project Siberian River run-off; SIRRO. Two and a half years oftime-series flux data were obtained between September 2000 and April 2003 and were analyzed for bulk components,amino acids, stable carbon and nitrogen isotopes as well as sterols and fatty acids.Sediment trap data show that much of the annual deposition occurred under ice cover, possibly enhanced byzooplanktonic activity and sediment resuspension. An early bloom of ice-associated algae in April/May occurred in thepolynya area and may have been very important to sustain the life cycles of higher organisms after the light limitation ofthe winter months due to no/low insolation and ice cover. The strong river input dominated the months JuneAugust inthe southern part of the Kara Sea. The central Kara Sea had a much shorter productive period starting in August and wasless affected by the river plumes. Despite different time-scales of sampling and trapping biases, total annual fluxes fromtraps were in the same order of magnitude as accumulation rates in surface sediments. Terrestrial organic carbonaccumulation decreased from 10.7 to 0.3 gCm 2 a 1 from the riverine source to the central Kara Sea. Parallel to this,preservation of marine organic matter decreased from 10% to 2% of primary productivity which was probably related todecreasing rates of sedimentation.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2023-06-08
    Beschreibung: The reconstruction of past sea-ice distribution in the Southern Ocean is crucial for an improved understanding of ice–ocean–atmosphere feedbacks and the evaluation of Earth system and Antarctic ice sheet models. The Antarctic Peninsula (AP) has been experiencing a warming since the start of regular monitoring of the atmospheric temperature in the 1950s. The associated decrease in sea-ice cover contrasts the trend of growing sea-ice extent in East Antarctica. To reveal the long-term sea-ice history at the northern Antarctic Peninsula (NAP) under changing climate conditions, we examined a marine sediment core from the eastern basin of the Bransfield Strait covering the last Deglacial and the Holocene. For sea-ice reconstructions, we focused on the specific sea-ice biomarker lipid IPSO25, a highly branched isoprenoid (HBI), and sea-ice diatoms, whereas a phytoplankton-derived HBI triene (C25:3) and warmer open-ocean diatom assemblages reflect predominantly ice-free conditions. We further reconstruct ocean temperatures using glycerol dialkyl glycerol tetraethers (GDGTs) and diatom assemblages and compare our sea-ice and temperature records with published marine sediment and ice core data. A maximum ice cover is observed during the Antarctic Cold Reversal 13 800–13 000 years before present (13.8–13 ka), while seasonally ice-free conditions permitting (summer) phytoplankton productivity are reconstructed for the late Deglacial and the Early Holocene from 13 to 8.3 ka. An overall decreasing sea-ice trend throughout the Middle Holocene coincides with summer ocean warming and increasing phytoplankton productivity. The Late Holocene is characterized by highly variable winter sea-ice concentrations and a sustained decline in the duration and/or concentration of spring sea ice. Overall diverging trends in GDGT-based TEX L86 and RI-OH' subsurface ocean temperatures (SOTs) are found to be linked to opposing spring and summer insolation trends, respectively.
    Materialart: info:eu-repo/semantics/article
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...