GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2024-06-12
    Description: Excessive anthropogenic nitrogen (N) inputs to the biosphere have disrupted the global nitrogen cycle. To better quantify the spatial and temporal patterns of anthropogenic N enrichments, assess their impacts on the biogeochemical cycles of the planet and other living organisms, and improve nitrogen use efficiency (NUE) for sustainable development, we develop a comprehensive and synthetic dataset for anthropogenic N inputs to the terrestrial biosphere. This Harmonized Anthropogenic N Inputs (HaNi) dataset takes advantage of different data sources in a spatiotemporally consistent way to generate a set of high-resolution gridded N input products from the preindustrial to present (1860-2019). The HaNi dataset includes annual rates of synthetic N fertilizer, manure application/deposition, and atmospheric N deposition in cropland, pasture, and rangeland at 5-arcmin. Specifically, the N inputs are categorized, according to the N forms and the land use, as 1) NH4-N fertilizer applied to cropland, 2) NO3-N fertilizer applied to cropland, 3) NH4-N fertilizer applied to pasture, 4) NO3-N fertilizer applied to pasture, 5) manure N application on cropland, 6) manure N application on pasture, 7) manure N deposition on pasture, 8) manure N deposition on rangeland, 9) NHx-N deposition, and 10) NOy-N deposition. The total anthropogenic N (TN) inputs to global terrestrial ecosystems increased from 29.05 Tg N yr-1 in the 1860s to 267.23 Tg N yr-1 in the 2010s, with the dominant N source changing from atmospheric N deposition (before the 1900s) to manure N (the 1910s-2000s), and to synthetic fertilizer in the 2010s. The proportion of synthetic NH4-N fertilizer increased from 64% in the 1960s to 90% in the 2010s, while synthetic NO3-N fertilizer decreased from 36% in the 1960s to 10% in the 2010s. Hotspots of TN inputs shifted from Europe and North America to East and South Asia during the 1960s-2010s. Such spatial and temporal dynamics captured by the HaNi dataset are expected to facilitate a comprehensive assessment of the coupled human-earth system and address a variety of social welfare issues, such as climate-biosphere feedback, air pollution, water quality, and biodiversity.
    Keywords: atmospheric deposition; Binary Object; Crop; fertilizer; File content; manure; nitrogen; Nitrogen Model Inter-Comparison Project; NMIP; pastures; rangeland
    Type: Dataset
    Format: text/tab-separated-values, 20 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-10-27
    Description: Nitrous oxide (N2O) is a long-lived potent greenhouse gas and stratospheric ozone-depleting substance, which has been accumulating in the atmosphere since the pre-industrial period. The mole fraction of atmospheric N2O has increased by nearly 25 % from 270 parts per billion (ppb) in 1750 to 336 ppb in 2022, with the fastest annual growth rate since 1980 of more than 1.3 ppb yr-1 in both 2020 and 2021. As a core component of our global greenhouse gas assessments coordinated by the Global Carbon Project (GCP), we present a global N2O budget that incorporates both natural and anthropogenic sources and sinks, and accounts for the interactions between nitrogen additions and the biochemical processes that control N2O emissions. We use Bottom-Up (BU: inventory, statistical extrapolation of flux measurements, process-based land and ocean modelling) and Top-Down (TD: atmospheric measurement-based inversion) approaches. We provide a comprehensive quantification of global N2O sources and sinks in 21 natural and anthropogenic categories in 18 regions between 1980 and 2020. We estimate that total annual anthropogenic N2O emissions increased 40 % (or 1.9 Tg N yr-1) in the past four decades (1980–2020). Direct agricultural emissions in 2020, 3.9 Tg N yr−1 (best estimate) represent the large majority of anthropogenic emissions, followed by other direct anthropogenic sources (including ‘Fossil fuel and industry’, ‘Waste and wastewater’, and ‘Biomass burning’ (2.1 Tg N yr−1), and indirect anthropogenic sources (1.3 Tg N yr−1). For the year 2020, our best estimate of total BU emissions for natural and anthropogenic sources was 18.3 (lower-upper bounds: 10.5–27.0) Tg N yr-1, close to our TD estimate of 17.0 (16.6–17.4) Tg N yr-1. For the period 2010–2019, the annual BU decadal-average emissions for natural plus anthropogenic sources were 18.1 (10.4–25.9) Tg N yr-1 and TD emissions were 17.4 (15.8–19.20 Tg N yr-1. The once top emitter Europe has reduced its emissions since the 1980s by 31 % while those of emerging economies have grown, making China the top emitter since the 2010s. The observed atmospheric N2O concentrations in recent years have exceeded projected levels under all scenarios in the Coupled Model Intercomparison Project Phase 6 (CMIP6), underscoring the urgency to reduce anthropogenic N2O emissions. To evaluate mitigation efforts and contribute to the Global Stocktake of the United Nations Framework Convention on Climate Change, we propose establishing a global network for monitoring and modeling N2O from the surface through the stratosphere. The data presented in this work can be downloaded from https://doi.org/10.18160/RQ8P-2Z4R (Tian et al. 2023).
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-08-23
    Description: Background: A lot of empirical studies have been conducted to evaluate the prevalence of depression and anxiety among Chinese adults with cancer. We aimed to conduct a meta-analysis in order to evaluate the prevalence and odds ratios of depression and anxiety in Chinese adults with cancer compared with those without. Methods: The three most comprehensive computerized Chinese academic databases-CNKI, Wangfang and Vip databases-were systematically screened through September 2012. PubMed and Web of Science (SCIE) were also searched from their inception until September 2012 without language restrictions, and an internet search was also used. Case--control studies assessing the prevalence of depression and anxiety among Chinese adults with cancer were analyzed. Study selection and appraisal were conducted independently by three authors. The non-weighted prevalence, pooled random-effects estimates of odds ratio (OR) and 95% confidence intervals (CI) were all calculated. Results: Seventeen eligible studies with a total of 3497 subjects were included. The prevalence of depression and anxiety were significantly higher in adults with cancer compared with those without (Depression: 54.90% vs. 17.50%, OR = 7.85, 95%CI = 5.56-11.07, P = 0.000; Anxiety: 49.69% vs. 18.37%, OR = 6.46, 95%CI = 4.36-9.55, P = 0.000), the same situation was also observed in subgroup of control groups, assessment methods and cancer types. Although no difference of depression was observed in studies utilizing clinical diagnosis compared with self-report, the OR of anxiety in adults with cancer compared with those without was higher in studies utilizing clinical diagnosis (OR = 8.42, 95%CI = 4.83-14.70) than self-reports (OR = 5.83, 95%CI = 3.64-9.34). The ORs of depression and anxiety in cancer patients compared with disease group (Depression: OR = 6.03, 95%CI = 4.23-8.61; Anxiety: OR = 4.40, 95%CI = 3.05-6.36) were lower than in those compared with normal group (Depression: OR = 13.58, 95%CI = 6.26-29.46; Anxiety: OR = 15.47, 95%CI = 10.00-23.95). Conclusions: We identified high prevalence rates of depression and anxiety among Chinese adults with cancer. The findings support that the prevalence of depression and anxiety among adults with cancer should receive more attention in Chinese medical settings.
    Electronic ISSN: 1471-2407
    Topics: Medicine
    Published by BioMed Central
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-02-08
    Description: Nitrous oxide (N2O), like carbon dioxide, is a long-lived greenhouse gas that accumulates in the atmosphere. Over the past 150 years, increasing atmospheric N2O concentrations have contributed to stratospheric ozone depletion1 and climate change2, with the current rate of increase estimated at 2 per cent per decade. Existing national inventories do not provide a full picture of N2O emissions, owing to their omission of natural sources and limitations in methodology for attributing anthropogenic sources. Here we present a global N2O inventory that incorporates both natural and anthropogenic sources and accounts for the interaction between nitrogen additions and the biochemical processes that control N2O emissions. We use bottom-up (inventory, statistical extrapolation of flux measurements, process-based land and ocean modelling) and top-down (atmospheric inversion) approaches to provide a comprehensive quantification of global N2O sources and sinks resulting from 21 natural and human sectors between 1980 and 2016. Global N2O emissions were 17.0 (minimum–maximum estimates: 12.2–23.5) teragrams of nitrogen per year (bottom-up) and 16.9 (15.9–17.7) teragrams of nitrogen per year (top-down) between 2007 and 2016. Global human-induced emissions, which are dominated by nitrogen additions to croplands, increased by 30% over the past four decades to 7.3 (4.2–11.4) teragrams of nitrogen per year. This increase was mainly responsible for the growth in the atmospheric burden. Our findings point to growing N2O emissions in emerging economies—particularly Brazil, China and India. Analysis of process-based model estimates reveals an emerging N2O–climate feedback resulting from interactions between nitrogen additions and climate change. The recent growth in N2O emissions exceeds some of the highest projected emission scenarios3,4, underscoring the urgency to mitigate N2O emissions.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-10-01
    Description: Background: Studies of functional modules in a Protein-Protein Interaction (PPI) network contribute greatly to theunderstanding of biological mechanisms. With the development of computing science,computational approaches have played an important role in detecting functional modules. Results: We present a new approach using multi-agent evolution for detection of functional modules in PPInetworks. The proposed approach consists of two stages: the solution construction for agents in apopulation and the evolutionary process of computational agents in a lattice environment, where eachagent corresponds to a candidate solution to the detection problem of functional modules in a PPInetwork. First, the approach utilizes a connection-based encoding scheme to model an agent, andemploys a random-walk behavior merged topological characteristics with functional information toconstruct a solution. Next, it applies several evolutionary operators, i. e., competition, crossover, andmutation, to realize information exchange among agents as well as solution evolution. Systematicexperiments have been conducted on three benchmark testing sets of yeast networks. Experimentalresults show that the approach is more effective compared to several other existing algorithms. Conclusions: The algorithm has the characteristics of outstanding recall, F-measure, sensitivity and accuracy whilekeeping other competitive performances, so it can be applied to the biological study which requireshigh accuracy.
    Electronic ISSN: 1471-2105
    Topics: Biology , Computer Science
    Published by BioMed Central
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-04-16
    Description: The Journal of Organic Chemistry DOI: 10.1021/jo500176g
    Print ISSN: 0022-3263
    Electronic ISSN: 1520-6904
    Topics: Chemistry and Pharmacology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-12-16
    Description: LiYSiO 4 :Ce is a promising scintillator and some of its properties have been reported in previous papers. In this paper, samples doped with different concentrations of Ce are prepared and studied. First, the relative light yields of the samples are measured as 28.1%–37.1% compared with a standard anthracene crystal being irradiated by α particles and as ~27.2% compared with NaI being irradiated by X-rays. Second, the effects of sample thicknesses on light yields are presented. Finally the timing behaviors of samples with different doped concentrations being irradiated with alpha particles and X-rays are discussed. The result shows that LiYSiO 4 :Ce is a kind of fast scintillator (~ 30 ns) with a moderate light yield that can be used for neutron detection.
    Print ISSN: 1674-1137
    Topics: Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-03-09
    Description: The Gulf of Mexico (GOM) is facing large pressures from environmental changes since the beginning of last century. However, the magnitude and long-term trend of total water discharge to the GOM and the underlying processes are not well understood. In this study, the Dynamic Land Ecosystem Model (DLEM) has been improved and applied to investigate spatial and temporal variations of evapotranspiration (ET) and runoff (R) over drainage basins of the GOM during 1901-2008. Modeled ET and discharge were evaluated against up-scaled data sets and gauge observations. Simulated results demonstrated a significant decrease in ET at a rate of 15 mm yr -1 century -1 and an insignificant trend in runoff/precipitation (R/P) and river discharge over the whole region during 1901-2008. However, the trends in estimated water fluxes show substantial spatial and temporal heterogeneities across the study region. Generally, in the west arid area, ET, R, and R/P decreased; while they increased in the eastern part of the study area during the last 108 years. In the resent 30 years this region experienced substantial decrease in R. Factorial simulation experiments indicate that climate change, particularly P, was the dominant factor controlling interannual variations of ET and R; while land use change had the same magnitude of effects on long-term trends in water fluxes as climate change did. To eliminate modeling uncertainties, high-resolution historical meteorological data sets and model parameterizations on anthropogenic effects such as water use and dam constructions should be developed.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-12-04
    Description: Destructive gas generation with associated swelling has been a major challenge to the large-scale application of lithium ion batteries (LIBs) made from Li4Ti5O12 (LTO) anodes. Here we report root causes of the gassing behavior, and suggest remedy to suppress it. The generated gases mainly contain H2, CO2 and CO, which originate from interfacial reactions between LTO and surrounding alkyl carbonate solvents. The reactions occur at the very thin outermost surface of LTO (111) plane, which result in transformation from (111) to (222) plane and formation of (101) plane of anatase TiO2. A nanoscale carbon coating along with a stable solid electrolyte interface (SEI) film around LTO is seen most effective as a barrier layer in suppressing the interfacial reaction and resulting gassing from the LTO surface. Such an ability to tune the interface nanostructure of electrodes has practical implications in the design of next-generation high power LIBs. Scientific Reports 2 doi: 10.1038/srep00913
    Electronic ISSN: 2045-2322
    Topics: Natural Sciences in General
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-07-17
    Description: Background: Studies investigating the association between Hepatitis B virus (HBV) and hepatitis C virus (HCV) infections and intrahepatic cholangiocarcinoma (ICC) have reported inconsistent findings. We conducted a meta-analysis of epidemiological studies to explore this relationship. Methods: A comprehensive search was conducted to identify the eligible studies of hepatitis infections and ICC risk up to September 2011. Summary odds ratios (OR) with their 95% confidence intervals (95% CI) were calculated with random-effects models using Review Manager version 5.0. Results: Thirteen case-control studies and 3 cohort studies were included in the final analysis. The combined risk estimate of all studies showed statistically significant increased risk of ICC incidence with HBV and HCV infection (OR = 3.17, 95% CI, 1.88-5.34, and OR = 3.42, 95% CI, 1.96-5.99, respectively). For case-control studies alone, the combined OR of infection with HBV and HCV were 2.86 (95% CI, 1.60-5.11) and 3.63 (95% CI, 1.86-7.05), respectively, and for cohort studies alone, the OR of HBV and HCV infection were 5.39 (95% CI, 2.34-12.44) and 2.60 (95% CI, 1.36-4.97), respectively. Conclusions: This study suggests that both HBV and HCV infection are associated with an increased risk of ICC.
    Electronic ISSN: 1471-2407
    Topics: Medicine
    Published by BioMed Central
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...