GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • PANGAEA  (5)
  • 2020-2024  (2)
  • 2010-2014  (3)
  • 1985-1989
Document type
Keywords
Publisher
Years
  • 2020-2024  (2)
  • 2010-2014  (3)
  • 1985-1989
  • 2015-2019  (12)
Year
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Schulz, Kai Georg; Bellerby, Richard G J; Brussaard, Corina P D; Büdenbender, Jan; Czerny, Jan; Engel, Anja; Fischer, Matthias; Krug, Sebastian; Lischka, Silke; Koch-Klavsen, Stephanie; Ludwig, Andrea; Meyerhöfer, Michael; Nondal, G; Silyakova, Anna; Stuhr, Annegret; Riebesell, Ulf (2013): Temporal biomass dynamics of an Arctic plankton bloom in response to increasing levels of atmospheric carbon dioxide. Biogeosciences, 10(1), 161-180, https://doi.org/10.5194/bg-10-161-2013
    Publication Date: 2023-10-21
    Description: Ocean acidification and carbonation, driven by anthropogenic emissions of carbon dioxide (CO2), have been shown to affect a variety of marine organisms and are likely to change ecosystem functioning. High latitudes, especially the Arctic, will be the first to encounter profound changes in carbonate chemistry speciation at a large scale, namely the under-saturation of surface waters with respect to aragonite, a calcium carbonate polymorph produced by several organisms in this region. During a CO2 perturbation study in 2010, in the framework of the EU-funded project EPOCA, the temporal dynamics of a plankton bloom was followed in nine mesocosms, manipulated for CO2 levels ranging initially from about 185 to 1420 matm. Dissolved inorganic nutrients were added halfway through the experiment. Autotrophic biomass, as identified by chlorophyll a standing stocks (Chl a), peaked three times in all mesocosms. However, while absolute Chl a concentrations were similar in all mesocosms during the first phase of the experiment, higher autotrophic biomass was measured at high in comparison to low CO2 during the second phase, right after dissolved inorganic nutrient addition. This trend then reversed in the third phase. There were several statistically significant CO2 effects on a variety of parameters measured in certain phases, such as nutrient utilization, standing stocks of particulate organic matter, and phytoplankton species composition. Interestingly, CO2 effects developed slowly but steadily, becoming more and more statistically significant with time. The observed CO2 related shifts in nutrient flow into different phytoplankton groups (mainly diatoms, dinoflagellates, prasinophytes and haptophytes) could have consequences for future organic matter flow to higher trophic levels and export production, with consequences for ecosystem productivity and atmospheric CO2.
    Keywords: BIOACID; Biological Impacts of Ocean Acidification
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-12-27
    Description: Microzooplankton (microZP, protists) and mesozooplankton (mesoZP, metazoans) abundances and biomass as well as presence of domoic acid (DA, phycotoxin) during the mesocosm experiment in the Canary Islands in autumn 2019. Depth-integrated (0-2.5m) water samples were taken over the course of 33 days, in 2-day intervals for microZP and mesoZP and 4-day intervals for DA. MicroZP was assessed by Utermöhl light microscopy and its biomass estimated using biovolume to carbon conversion factors from the literature. MesoZP samples were split into three size fractions (55-200, 200-500 and 〉500 µm), preserved with 70% ethanol and assessed under a stereo microscope. For biomass, mesoZP were measured in an element analyser. MesoZP data is provided for copepods only (dominant group) and all metazoan zooplankton combined (mainly copepods and appendicularians). For DA, particulate matter was filtered (〉0.7µm) and analysed via liquid chromatography and tandem mass spectrometry. The upwelling treatment started on day 6. Methodological details in Goldenberg et al. (doi:10.3389/fmars.2022.1015188) and Goldenberg et al. (under review).
    Keywords: AQUACOSM; artificial upwelling; Canarias Sea; carbon dioxide removal; CDRmare; Ciliates, heterotrophic; Ciliates, heterotrophic, biomass as carbon; Copepoda; Copepoda, biomass as carbon; Copepoda, nauplii; DAM CDRmare - Test-ArtUp: Road testing ocean artificial upwelling; DATE/TIME; Day of experiment; Depth, water, experiment, bottom/maximum; Depth, water, experiment, top/minimum; diatoms; Dinoflagellates; Dinoflagellates, biomass as carbon; Domoic acid; Domoic acid per unit mass particulate organic carbon; Event label; Field experiment; GC2019; KOSMOS; KOSMOS_2019; KOSMOS_2019_Mesocosm-M1; KOSMOS_2019_Mesocosm-M2; KOSMOS_2019_Mesocosm-M3; KOSMOS_2019_Mesocosm-M4; KOSMOS_2019_Mesocosm-M5; KOSMOS_2019_Mesocosm-M6; KOSMOS_2019_Mesocosm-M7; KOSMOS_2019_Mesocosm-M8; KOSMOS Gran Canaria; MESO; mesocosm experiment; Mesocosm experiment; Mesocosm label; Mesozooplankton; Mesozooplankton, biomass as carbon; negative emission technology; Network of Leading European AQUAtic MesoCOSM Facilities Connecting Mountains to Oceans from the Arctic to the Mediterranean; Ocean Artificial Upwelling; Ocean-artUp; ocean fertilization; Phase description; plankton food web; Protista, heterotrophic; Protista, heterotrophic, biomass as carbon; Research Mission of the German Marine Research Alliance (DAM): Marine carbon sinks in decarbonisation pathways; Size fraction 〉 500 µm; Size fraction 〉 55 µm; Size fraction 200-500 µm; Size fraction 55-200 µm; Test-ArtUp; Treatment; trophic transfer; Type of study
    Type: Dataset
    Format: text/tab-separated-values, 4332 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-01-29
    Description: Abundance and biovolume data of the community of larger phytoplankton from the mesocosm experiment conducted in the Canary Islands in autumn 2019. Depth-integrated (0-2.5m) water samples were taken in 2-days intervals over the course of 33 days and autotrophic taxa assessed to the lowest taxonomic level possible using Utermöhl microscopy. Only taxa larger than approx. 〉5 µm could be considered with this method. Biovolume was calculated based on geometrical measurements (dominant taxa) or the literature (rare taxa). Carbon biomass estimates were purposefully not provided, as the standard literature conversion factors from biovolume to carbon biomass did not apply to many of our samples, likely due to low carbon density within cells. Predominantly mixotrophic or heterotrophic taxa are not provided in this dataset. The upwelling treatment started on day 6. Methodological details in Goldenberg et al. (doi:10.3389/fmars.2022.1015188).
    Keywords: Amphora sp.; Amphora sp., biovolume; AQUACOSM; artificial upwelling; Calculated; Canarias Sea; carbon dioxide removal; CDRmare; Cerataulina pelagica; Cerataulina pelagica, biovolume; Chaetoceros cf. aequatorialis; Chaetoceros cf. aequatorialis, biovolume; Chaetoceros cf. compressus; Chaetoceros cf. compressus, biovolume; Chaetoceros cf. curvisetus; Chaetoceros cf. curvisetus, biovolume; Chaetoceros cf. lauderi; Chaetoceros cf. lauderi, biovolume; Chaetoceros cf. lorenzianus; Chaetoceros cf. lorenzianus, biovolume; Chaetoceros cf. tenuissimus; Chaetoceros cf. tenuissimus, biovolume; Chaetoceros decipiens; Chaetoceros decipiens, biovolume; Chaetoceros densus; Chaetoceros densus, biovolume; Chrysochromulina sp.; Chrysochromulina sp., biovolume; Climacodium cf. frauenfeldianum; Climacodium cf. frauenfeldianum, biovolume; Coccolithophoridae, biovolume; Coccolithophoridae, total; Coscinodiscus cf. pavillardii; Coscinodiscus cf. pavillardii, biovolume; Coscinodiscus sp.; Coscinodiscus sp., biovolume; Cylindrotheca closterium; Cylindrotheca closterium, biovolume; Cylindrotheca sp.; Cylindrotheca sp., biovolume; Dactyliosolen cf. blavyanus; Dactyliosolen cf. blavyanus, biovolume; Dactyliosolen cf. fragilissimus; Dactyliosolen cf. fragilissimus, biovolume; DAM CDRmare - Test-ArtUp: Road testing ocean artificial upwelling; DATE/TIME; Day of experiment; diatoms; Diatoms; Diatoms, biovolume; Dictyocha fibula; Dictyocha fibula, biovolume; Diploneis sp.; Diploneis sp., biovolume; Event label; Flagellates; Flagellates, biovolume; Flagellates indeterminata, oval; Flagellates indeterminata, oval, biovolume; GC2019; Guinardia delicatula; Guinardia delicatula, biovolume; Guinardia striata; Guinardia striata, biovolume; Hemiaulus cf. sinensis; Hemiaulus cf. sinensis, biovolume; KOSMOS; KOSMOS_2019; KOSMOS_2019_Mesocosm-M1; KOSMOS_2019_Mesocosm-M2; KOSMOS_2019_Mesocosm-M3; KOSMOS_2019_Mesocosm-M4; KOSMOS_2019_Mesocosm-M5; KOSMOS_2019_Mesocosm-M6; KOSMOS_2019_Mesocosm-M7; KOSMOS_2019_Mesocosm-M8; KOSMOS Gran Canaria; Leptocylindrus danicus; Leptocylindrus danicus, biovolume; Leptocylindrus minimus; Leptocylindrus minimus, biovolume; Licmophora sp.; Licmophora sp., biovolume; MESO; Mesocosm experiment; Mesocosm label; Microscopy; Minutocellus polymorphus; Minutocellus polymorphus, biovolume; negative emission technology; Network of Leading European AQUAtic MesoCOSM Facilities Connecting Mountains to Oceans from the Arctic to the Mediterranean; Nitzschia cf. acicularis; Nitzschia cf. acicularis, biovolume; Number of taxa; Ocean Artificial Upwelling; Ocean-artUp; ocean fertilization; Phaeocystis cf. globosa; Phaeocystis cf. globosa, biovolume; Phaeocystis sp.; Phaeocystis sp., biovolume; Phase description; Phytoplankton, biovolume; Phytoplankton, total; Pielou evenness index; plankton community; Pleurosigma sp.; Pleurosigma sp., biovolume; Proboscia sp.; Proboscia sp., biovolume; Pseudo-nitzschia delicatissima; Pseudo-nitzschia delicatissima, biovolume; Pseudo-nitzschia pungens; Pseudo-nitzschia pungens, biovolume; Pseudo-nitzschia sp.; Pseudo-nitzschia sp., biovolume; Pseudo-nitzschia subcurvata; Pseudo-nitzschia subcurvata, biovolume; Research Mission of the German Marine Research Alliance (DAM): Marine carbon sinks in decarbonisation pathways; Rhizosolenia cf. imbricata; Rhizosolenia cf. imbricata, biovolume; Rhizosolenia cf. setigera; Rhizosolenia cf. setigera, biovolume; Rhizosolenia sp.; Rhizosolenia sp., biovolume; Shannon Diversity Index; Si:N; silicic acid; Skeletonema sp.; Skeletonema sp., biovolume; Striatella cf. unipunctata; Striatella cf. unipunctata, biovolume; Sum; Test-ArtUp; Treatment
    Type: Dataset
    Format: text/tab-separated-values, 14416 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-03-15
    Keywords: Alkalinity, total; Aragonite saturation state; Arctic; Bicarbonate ion; Biomass; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chlorophyll a; Coast and continental shelf; Community composition and diversity; Coulometric titration; DATE/TIME; Entire community; EPOCA; European Project on Ocean Acidification; Field experiment; Fluorometric; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Gymnodinium arcticum; Gyrodinium fusiforme; Identification; Katodinium glaucum; Lohmaniella oviformis; Mesocosm or benthocosm; Microscopy; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Polar; Potentiometric titration; Rimostrombidium sp.; Salinity; Species; Strombidium conicum; Temperature, water; Time, incubation
    Type: Dataset
    Format: text/tab-separated-values, 27948 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-03-15
    Keywords: Alkalinity, total; Aragonite saturation state; Arctic; Bicarbonate ion; Biomass/Abundance/Elemental composition; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Coulometric titration; Entire community; EPOCA; European Project on Ocean Acidification; Fatty acids, total; Field experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Group; Identification; Mesocosm or benthocosm; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Polar; Potentiometric titration; Salinity; Temperature, water; Time, incubation
    Type: Dataset
    Format: text/tab-separated-values, 38502 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...