GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • OceanRep  (4)
  • Other types  (1)
  • 2020-2024  (4)
  • 2015-2019  (1)
Document type
Language
Years
Year
  • 1
    Publication Date: 2024-03-12
    Description: Zooplankton plays a notable role in ocean biogeochemical cycles. However, it is often simulated as one generic group and top closure term in ocean biogeochemical models. This study presents the description of three zooplankton functional types (zPFTs, micro‐, meso‐ and macrozooplankton) in the ocean biogeochemical model FESOM‐REcoM. In the presented model, microzooplankton is a fast‐growing herbivore group, mesozooplankton is another major consumer of phytoplankton, and macrozooplankton is a slow‐growing group with a low temperature optimum. Meso‐ and macrozooplankton produce fast‐sinking fecal pellets. With three zPFTs, the annual mean zooplankton biomass increases threefold to 210 Tg C. The new food web structure leads to a 25% increase in net primary production and a 10% decrease in export production globally. Consequently, the export ratio decreases from 17% to 12% in the model. The description of three zPFTs reduces model mismatches with observed dissolved inorganic nitrogen and chlorophyll concentrations in the South Pacific and the Arctic Ocean, respectively. Representation of three zPFTs also strongly affects phytoplankton phenology: Fast nutrient recycling by zooplankton sustains higher chlorophyll concentrations in summer and autumn. Additional zooplankton grazing delays the start of the phytoplankton bloom by 3 weeks and controls the magnitude of the bloom peak in the Southern Ocean. As a result, the system switches from a light‐controlled Sverdrup system to a dilution‐controlled Behrenfeld system. Overall, the results suggest that representation of multiple zPFTs is important to capture underlying processes that may shape the response of ecosystems and ecosystem services to on‐going and future environmental change in model projections.
    Description: Plain Language Summary: Zooplankton plays an important role in the ocean food web and biogeochemical cycles. However, it is often represented in very simple forms in mathematical models that are, for example, used to investigate how marine primary productivity will react to climate change. To understand how these models would change when more complicated formulations for zooplankton are used, we present here a new version of the model with three (instead of only one) zooplankton groups. We find that this more complicated representation leads to higher zooplankton biomass, which is closer to observations, and this stimulates growth of phytoplankton since zooplankton also returns nutrients into the system. In addition, zooplankton grazing controls the seasonal cycle of phytoplankton, as we show for one example in the Southern Ocean.
    Description: Key Points: Nutrient recycling by zooplankton stimulates net primary production in the biogeochemical model REcoM‐2. Modeling zooplankton functional types (zPFTs) leads to a switch from a light‐controlled Sverdrup system to a dilution‐controlled Behrenfeld system. Implementing multiple zPFTs improves the modeled zooplankton biomass and zooplankton‐mediated biogeochemical fluxes.
    Description: Helmholtz Young Investigator Group Marine Carbon and Ecosystem Feedbacks in the Earth System [MarESys]
    Description: https://doi.org/10.1594/PANGAEA.779970
    Description: https://doi.org/10.1594/PANGAEA.785501
    Description: https://doi.org/10.1594/PANGAEA.777398
    Description: https://www.nodc.noaa.gov/OC5/woa18/woa18data.html
    Description: http://sites.science.oregonstate.edu/ocean.productivity/index.php
    Description: https://doi.pangaea.de/10.1594/PANGAEA.942192
    Keywords: ddc:577.7 ; Southern Ocean ; zooplankton ; ocean food web ; biogeochemical cycles ; modeling
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-02-01
    Description: We conducted a year-round mesozooplankton study in the Arctic Kongsfjord from August 1998 until July 1999 to investigate seasonal abundance and vertical as well as stage distributions of the prevalent taxa. It is the first investigation in Kongsfjord that covers the Arctic winter season and provides reasonable estimates also of small-sized copepod species. Abundant smaller copepods comprised Oithona similis, Pseudocalanus minutus, Microcalanus spp., Triconia borealis and Acartia longiremis. Among the larger copepods, Calanus finmarchicus, C. glacialis, C. hyperboreus and Metridia longa dominated. The thecosome pteropod Limacina helicina was also an important component. Abundance maxima occurred in November (988,669 ind. m−2) with one to two orders of magnitude higher numbers as compared to all other months (39,832–200,067 ind. m−2). The summers of 1998 and 1999 were characterized by intrusions of Atlantic water, but the community was not entirely dominated by advected boreal species. During winter, the majority of the mesozooplankton occurred below 100 m. Advection is the most likely reason for the accumulation of zooplankton at depth in winter, but local production may also contribute to high overwintering numbers. Much lower abundances of most species in spring suggest high winter mortality and emphasize the importance of sufficient reproductive success during the previous summer to ensure enough winter survivors as seed stock for the coming reproductive season. This study was conducted prior to the recent warming trend in the Arctic. Therefore, it provides valuable baseline data and allows comparing present and future states of the zooplankton community in Kongsfjord.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: The northern Humboldt Current upwelling system (HCS) belongs to the most productive marine ecosystems, providing five to eight times higher fisheries landings per unit area than other coastal upwelling systems. To solve this “Peruvian puzzle”, to elucidate the pelagic food-web structure and to better understand trophic interactions in the HCS, a combined stable isotope and fatty acid trophic biomarker approach was adopted for key zooplankton taxa and higher trophic positions with an extensive spatial coverage from 8.5 to 16°S and a vertical range down to 1,000 m depth. A pronounced regional shift by up to ∼5‰ in the δ15N baseline of the food web occurred from North to South. Besides regional shifts, δ15N ratios of particulate organic matter (POM) also tended to increase with depth, with differences of up to 3.8‰ between surface waters and the oxygen minimum zone. In consequence, suspension-feeding zooplankton permanently residing at depth had up to ∼6‰ higher δ15N signals than surface-living species or diel vertical migrants. The comprehensive data set covered over 20 zooplankton taxa and indicated that three crustacean species usually are key in the zooplankton community, i.e., the copepods Calanus chilensis at the surface and Eucalanus inermis in the pronounced OMZ and the krill Euphausia mucronata, resulting in an overall low number of major trophic pathways toward anchovies. In addition, the semi-pelagic squat lobster Pleuroncodes monodon appears to play a key role in the benthic-pelagic coupling, as indicated by highest δ13C’ ratios of −14.7‰. If feeding on benthic resources and by diel vertical migration, they provide a unique pathway for returning carbon and energy from the seafloor to the epipelagic layer, increasing the food supply for pelagic fish. Overall, these mechanisms result in a very efficient food chain, channeling energy toward higher trophic positions and partially explaining the “Peruvian puzzle” of enormous fish production in the HCS.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: Highlights: • Environmental conditions cause specific zooplankton life strategies. • No ontogenetic or diel vertical migration in the life cycle of Calanus chilensis. • Spatial expansion of Calanus chilensis secondary production far offshore. • Compacted surface biomass of Calanus chilensis allows easy foraging by anchovy. Abstract: Calanid copepods of the genera Calanus and Calanoides are key components of zooplankton communities in upwelling systems. Here, we compare the life-history traits of Calanus chilensis from the Humboldt Current Systems (HCS) off northern Peru and its counterpart Calanoides natalis from the northern Benguela Current System (BCS) off Namibia. A comprehensive data set of the distribution and abundance patterns of these species along extensive horizontal and vertical scales is presented. C. chilensis from the HCS was almost exclusively restricted to the surface layer (50–0 m) above the oxygen minimum zone (OMZ), whereas C. natalis from the BCS inhabited the entire water column down to 800 m performing ontogenetic vertical migration (OVM) through the OMZ. Resting stages of C. natalis at depth accumulated high amounts of lipid (30–60% of dry mass, DM), whereas C. chilensis did not rely on lipid reserves. These findings confirm that the life cycle of C. chilensis does not include OVM with diapause at depth. Surprisingly, the regional distribution of C. chilensis secondary production extended much further offshore (〉200 km from the coast) than is typical of other coastal upwelling systems. Deviating environmental conditions forced the two key calanid species to develop specific, but different life strategies for HCS and BCS. Compacted biomass concentrations of C. chilensis in the surface layer from the shelf (≤3 g DM m−2) to offshore waters (≤1.5 g DM m−2) facilitate easy and efficient foraging by predators such as juvenile Peruvian anchovies. In contrast, a large fraction of the C. natalis biomass occurs within the OMZ and is thus out of reach for hypoxia-sensitive predators. Calanoid copepods (e.g. C. chilensis) play a crucial role as important prey for growth and recruitment of small pelagic fish. Thus, the compacted biomass and high productivity of C. chilensis at the surface derived from its adaptive life-history traits (no OVM) may explain the superior trophic transfer efficiency and hence enormous fisheries yield of the HCS compared to the BCS.
    Type: Article , PeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-07
    Description: The Humboldt Current Upwelling System (HCS) is the most productive eastern boundary upwelling system (EBUS) in terms of fishery yield on the planet. EBUSs are considered hotspots of climate change with predicted expansion of mesopelagic oxygen minimum zones (OMZs) and related changes in the frequency and intensity of upwelling of nutrient-rich, low-oxygen deep water. To increase our mechanistic understanding of how upwelling impacts plankton communities and trophic links, we investigated mesozooplankton community succession and gut fluorescence, fatty acid and elemental compositions (C, N, O, P), and stable isotope (δ13C, δ15N) ratios of dominant mesozooplankton and microzooplankton representatives in a mesocosm setup off Callao (Peru) after simulated upwelling with OMZ water from two different locations and different N:P signatures (moderate and extreme treatments). An oxycline between 5 and 15 m with hypoxic conditions (〈50 µmol L−1) below ∼10 m persisted in the mesocosms throughout the experiment. No treatment effects were determined for the measured parameters, but differences in nutrient concentrations established through OMZ water additions were only minor. Copepods and polychaete larvae dominated in terms of abundance and biomass. Development and reproduction of the dominant copepod genera Paracalanus sp., Hemicyclops sp., Acartia sp., and Oncaea sp. were hindered as evident from accumulation of adult copepodids but largely missing nauplii. Failed hatching of nauplii in the hypoxic bottom layer of the mesocosms and poor nutritional condition of copepods suggested from very low gut fluorescence and fatty acid compositions most likely explain the retarded copepod development. Correlation analysis revealed no particular trophic relations between dominant copepods and phytoplankton groups. Possibly, particulate organic matter with a relatively high C:N ratio was a major diet of copepods. C:N ratios of copepods and polychaetes ranged 4.8–5.8 and 4.2–4.3, respectively. δ15N was comparatively high (∼13 ‰–17 ‰), potentially because the injected OMZ source water was enriched in δ15N as a result of anoxic conditions. Elemental ratios of dinoflagellates deviated strongly from the Redfield ratio. We conclude that opportunistic feeding of copepods may have played an important role in the pelagic food web. Overall, projected changes in the frequency and intensity of upwelling hypoxic waters may make a huge difference for copepod reproduction and may be further enhanced by varying N:P ratios of upwelled OMZ water masses.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...