GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Years
  • 1
    Publication Date: 2024-03-09
    Description: Increasing upwelling intensity and shoaling of the oxygen minimum zone (OMZ) is projected for Eastern Boundary Upwelling Systems (EBUSs) under ocean warming which may have severe consequences for mesopelagic food webs, trophic transfer, and fish production also in the Humboldt Current Upwelling System (HUS). To improve our mechanistic understanding, from February 23, 2017 until April 14, 2017 we performed a 50 days mesocosm experiment in the northern HUS (off Callao Bay, Peru) and monitored the zooplankton development prior to and following a simulated upwelling event through the addition of deeper water of two different OMZ-influenced subsurface waters to four of in total eight mesocosms. To elucidate plankton dynamics and trophic relationships, we followed the temporal development of the mesozooplankton community in relation to that of phytoplankton, analyzed the fatty acid composition and gut fluorescence of dominant copepods, and determined the stable isotope (SI) and elemental composition (C:N) of dominant zooplankton taxa. Zooplankton samples were collected from the mesocosms over the entire experiment duration using an Apstein net (17 cm diameter, 100 µm mesh) to determine abundance and taxonomic composition of the zooplankton community, and to analyze fatty acid composition, gut fluorescence and elemental composition of dominant zooplankton. Furthermore, abundance and biomass of zooplankton groups was estimated from scanned ZooScan images.
    Keywords: Abundance; Biomass; Climate - Biogeochemistry Interactions in the Tropical Ocean; Coastal Upwelling System in a Changing Ocean; CUSCO; Gut fluorescence; Humboldt Current System; KOSMOS_2017; KOSMOS_2017_Peru; KOSMOS Peru; Lipid; MESO; mesocosm experiment; Mesocosm experiment; Oxygen Minimun zone; SFB754; Stable isotopes; Zooplankton
    Type: Dataset
    Format: application/zip, 5 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-03-09
    Description: Biomass of zooplankton taxa in µg DM per liter as determined by ZooScan, using published area to dry weight relationships (Lehette & Hernandez-Leon 2009). Each data point is one sampling day (date) in one mesocosm (MK). For details on experimental treatments and sampling, refer to Bach et al. 2021 (https://doi.org/10.5194/bg-17-4831-2020) and Ayon et al. 2022 (https://doi.org/10.5194/bg-2022-157). Raw images are stored in https://ecotaxa.obs-vlfr.fr/prj/3784. All taxonomic categories are self-expanatory.
    Keywords: Abundance; Acartia spp., biomass, dry mass; Biomass; Bivalvia, biomass, dry mass; Branchiostoma spp., biomass, dry mass; Calanoida, biomass, dry mass; Ceratium spp., biomass, dry mass; Climate - Biogeochemistry Interactions in the Tropical Ocean; Cnidaria, biomass, dry mass; Coastal Upwelling System in a Changing Ocean; Copepoda, biomass, dry mass; Copepoda, nauplii, biomass, dry mass; Corycaeidae, biomass, dry mass; Crustacea, larvae, biomass, dry mass; CUSCO; Cyclopoida, biomass, dry mass; DATE/TIME; Diatoms, centrales, biomass, dry mass; Gastropoda, biomass, dry mass; Gut fluorescence; Harpacticoida, biomass, dry mass; Hemicyclops spp., biomass, dry mass; Humboldt Current System; KOSMOS_2017; KOSMOS_2017_Peru; KOSMOS Peru; Lipid; MESO; mesocosm experiment; Mesocosm experiment; Mesocosm label; Noctilucales, biomass, dry mass; Oncaeidae, biomass, dry mass; Oxygen Minimun zone; Paracalanus spp., biomass, dry mass; Polychaeta, biomass, dry mass; Sample code/label; Sample volume; SFB754; Spionidae, biomass, dry mass; Stable isotopes; Tintinnida, biomass, dry mass; Zooplankton; Zooplankton, biomass, dry mass
    Type: Dataset
    Format: text/tab-separated-values, 2430 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-03-09
    Description: Zooplankton species/groups abundance table per mesocosm and sampling day. Abundances are given as individual per m-3 and individuals per liter.
    Keywords: Abundance; Abundance per volume; Biomass; Class; Climate - Biogeochemistry Interactions in the Tropical Ocean; Coastal Upwelling System in a Changing Ocean; CUSCO; DATE/TIME; Day of experiment; Gut fluorescence; Humboldt Current System; KOSMOS_2017; KOSMOS_2017_Peru; KOSMOS Peru; Life stage; Lipid; MESO; mesocosm experiment; Mesocosm experiment; Mesocosm label; Order; Oxygen Minimun zone; SFB754; Species; Stable isotopes; Treatment; Zooplankton
    Type: Dataset
    Format: text/tab-separated-values, 15477 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-03-09
    Description: Fatty acid composition data for the two dominant copepods in the mesocosms (Paracalanus sp. and Hemicyclops sp.).
    Keywords: Abundance; Biomass; Climate - Biogeochemistry Interactions in the Tropical Ocean; Coastal Upwelling System in a Changing Ocean; CUSCO; DATE/TIME; Day of experiment; Fatty acid of total lipids; Fatty alcohol of total lipids; Gut fluorescence; Humboldt Current System; KOSMOS_2017; KOSMOS_2017_Peru; KOSMOS Peru; Lipid; Lipids, total, per dry mass; MESO; mesocosm experiment; Mesocosm experiment; Mesocosm label; Oxygen Minimun zone; Phase; Polyunsaturated fatty acids of total lipids; Saturated fatty acids of total lipids; SFB754; Species; Stable isotopes; Treatment; Zooplankton
    Type: Dataset
    Format: text/tab-separated-values, 1431 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-03-09
    Description: Gut fluorescence and C/N ratio of Paracalanus sp. determined during two occassions during the mesocosm experiment (Sampling Day 21/22 and 34/35).
    Keywords: Abundance; Biomass; Carbon/Nitrogen ratio; Climate - Biogeochemistry Interactions in the Tropical Ocean; Coastal Upwelling System in a Changing Ocean; CUSCO; Day of experiment; Gut fluorescence; Gut fluorescence, dry mass; Humboldt Current System; KOSMOS_2017; KOSMOS_2017_Peru; KOSMOS Peru; Lipid; MESO; mesocosm experiment; Mesocosm experiment; Mesocosm label; Oxygen Minimun zone; SFB754; Species; Stable isotopes; Time in minutes; Time point, descriptive; Treatment; Zooplankton
    Type: Dataset
    Format: text/tab-separated-values, 1088 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-03-09
    Description: This dataset shows abundance of zooplankton taxa in individuals per liter as determined by ZooScan. Each data point is one sampling day (date) in one mesocosm (MK). For details on experimental treatments and sampling, refer to Bach et al. 2021 (https://doi.org/10.5194/bg-17-4831-2020) and Ayon et al. 2022 (https://doi.org/10.5194/bg-2022-157). Raw images are stored in https://ecotaxa.obs-vlfr.fr/prj/3784. All taxonomic categories are self-explanatory.
    Keywords: Abundance; Acartia spp.; Biomass; Bivalvia; Branchiostoma spp.; Calanoida; Ceratium spp.; Climate - Biogeochemistry Interactions in the Tropical Ocean; Cnidaria; Coastal Upwelling System in a Changing Ocean; Copepoda; Copepoda, nauplii; Corycaeidae; Crustacea, larvae; CUSCO; Cyclopoida; DATE/TIME; Diatoms, centrales; Gastropoda; Gut fluorescence; Harpacticoida; Hemicyclops spp.; Humboldt Current System; KOSMOS_2017; KOSMOS_2017_Peru; KOSMOS Peru; Lipid; MESO; mesocosm experiment; Mesocosm experiment; Mesocosm label; Noctilucales; Oncaeidae; Oxygen Minimun zone; Paracalanus spp.; Polychaeta; Sample code/label; Sample volume; SFB754; Spionidae; Stable isotopes; Tintinnida; Zooplankton; ZOOSCAN
    Type: Dataset
    Format: text/tab-separated-values, 2430 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-07
    Description: The Humboldt Current Upwelling System (HCS) is the most productive eastern boundary upwelling system (EBUS) in terms of fishery yield on the planet. EBUSs are considered hotspots of climate change with predicted expansion of mesopelagic oxygen minimum zones (OMZs) and related changes in the frequency and intensity of upwelling of nutrient-rich, low-oxygen deep water. To increase our mechanistic understanding of how upwelling impacts plankton communities and trophic links, we investigated mesozooplankton community succession and gut fluorescence, fatty acid and elemental compositions (C, N, O, P), and stable isotope (δ13C, δ15N) ratios of dominant mesozooplankton and microzooplankton representatives in a mesocosm setup off Callao (Peru) after simulated upwelling with OMZ water from two different locations and different N:P signatures (moderate and extreme treatments). An oxycline between 5 and 15 m with hypoxic conditions (〈50 µmol L−1) below ∼10 m persisted in the mesocosms throughout the experiment. No treatment effects were determined for the measured parameters, but differences in nutrient concentrations established through OMZ water additions were only minor. Copepods and polychaete larvae dominated in terms of abundance and biomass. Development and reproduction of the dominant copepod genera Paracalanus sp., Hemicyclops sp., Acartia sp., and Oncaea sp. were hindered as evident from accumulation of adult copepodids but largely missing nauplii. Failed hatching of nauplii in the hypoxic bottom layer of the mesocosms and poor nutritional condition of copepods suggested from very low gut fluorescence and fatty acid compositions most likely explain the retarded copepod development. Correlation analysis revealed no particular trophic relations between dominant copepods and phytoplankton groups. Possibly, particulate organic matter with a relatively high C:N ratio was a major diet of copepods. C:N ratios of copepods and polychaetes ranged 4.8–5.8 and 4.2–4.3, respectively. δ15N was comparatively high (∼13 ‰–17 ‰), potentially because the injected OMZ source water was enriched in δ15N as a result of anoxic conditions. Elemental ratios of dinoflagellates deviated strongly from the Redfield ratio. We conclude that opportunistic feeding of copepods may have played an important role in the pelagic food web. Overall, projected changes in the frequency and intensity of upwelling hypoxic waters may make a huge difference for copepod reproduction and may be further enhanced by varying N:P ratios of upwelled OMZ water masses.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...