GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-10-31
    Description: Dataset: Particle Flux
    Description: This dataset includes particle fluxes calculated from gel trap images. Images were collected at the New England shelf break aboard the R/V Endeavor on 3-7 November 2017 (EN572) and 13-18 June 2016 (EN581) and on a transit between Honolulu, Hawaii and Portland, Oregon aboard the R/V Falkor between 24 January-20 February, 2017 (FK170124). For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/847036
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-1703664
    Keywords: Particle flux ; Gel trap images
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publication Date: 2022-10-31
    Description: Dataset: Phytoplankton Orientation - Diatom Stephanopyxis
    Description: Data from experiments on orientation of colonial diatom Stephanopyxis turris in Couette flow using hologram imagery analysis. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/809515
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-1657332
    Keywords: Phytoplankton ; Orientation ; Diatom ; Holography ; Stephanopyxis turris
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-27
    Description: Dataset: Classified particle images
    Description: This dataset includes Images and associated metadata of individually classified particles imaged and quantified in sediment trap gel layers collected on four research cruises conducted between 2015 and 2018 (EN572, EN581, FK170124, and RR1813). For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/860725
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-1703664
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Omand, M. M., Govindarajan, R., He, J., & Mahadevan, A. Sinking flux of particulate organic matter in the oceans: Sensitivity to particle characteristics. Scientific Reports, 10(1), (2020): 5582, doi:10.1038/s41598-020-60424-5.
    Description: The sinking of organic particles produced in the upper sunlit layers of the ocean forms an important limb of the oceanic biological pump, which impacts the sequestration of carbon and resupply of nutrients in the mesopelagic ocean. Particles raining out from the upper ocean undergo remineralization by bacteria colonized on their surface and interior, leading to an attenuation in the sinking flux of organic matter with depth. Here, we formulate a mechanistic model for the depth-dependent, sinking, particulate mass flux constituted by a range of sinking, remineralizing particles. Like previous studies, we find that the model does not achieve the characteristic ‘Martin curve’ flux profile with a single type of particle, but instead requires a distribution of particle sizes and/or properties. We consider various functional forms of remineralization appropriate for solid/compact particles, and aggregates with an anoxic or oxic interior. We explore the sensitivity of the shape of the flux vs. depth profile to the choice of remineralization function, relative particle density, particle size distribution, and water column density stratification, and find that neither a power-law nor exponential function provides a definitively superior fit to the modeled profiles. The profiles are also sensitive to the time history of the particle source. Varying surface particle size distribution (via the slope of the particle number spectrum) over 3 days to represent a transient phytoplankton bloom results in transient subsurface maxima or pulses in the sinking mass flux. This work contributes to a growing body of mechanistic export flux models that offer scope to incorporate underlying dynamical and biological processes into global carbon cycle models.
    Description: We thank NSF (OCE 1260080), NASA (NNX16AR48G), and the Ministry of Earth Sciences, Government of India (Monsoon Mission Project on the Bay of Bengal) for support. This work was largely done in 2012 while MMO was a postdoctoral associate at WHOI, during a visit by RG supported by The Mary Sears visiting scholar program to the Woods Hole Oceanographic Institution. Thanks also to Benjamin Hodges for many thoughtful contributions.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-11-03
    Description: The EXPORTS North Atlantic field campaign (EXPORTS-NA) of May 2021 used a diverse array of ship-based and autonomous platforms to measure and quantify processes leading to carbon export in the open ocean. The success of this field program relied heavily on the ability to make measurements following a Lagrangian trajectory within a coherent, retentive eddy (Sections 1, 2). Identifying an eddy that would remain coherent and retentive over the course of a monthlong deployment was a significant challenge that the EXPORTS team faced. This report details the processes and procedures used by the primarily shore-based eddy tracking team to locate, track, and sample with autonomous assets such an eddy before and during EXPORTS-NA.
    Description: This field deployment was funded by the NASA Ocean Biology and Biogeochemistry program and the National Science Foundation Biological and Chemical Oceanography programs. Initial gliders deployments were performed by the RRS Discovery and the authors thank the Porcupine Abyssal Plain – Sustained Observatory of the Natural Environment Research Council (NERC, UK), which is principally funded through the Climate Linked Atlantic Sector Science (CLASS) project supported by NERC National Capability funding (NE/R015953/1) and by IFADO (Innovation in the Framework of the Atlantic Deep Ocean) EAPA_165/2016. Technical assistance with glider deployment was provided by Marine Autonomous Robotic Systems (NOC). The authors thank Inia Soto Ramos for assistance in publishing this manuscript through the NASA Technical Memorandum series. This is PMEL contribution number 5372.
    Keywords: NASA/TM–20220009705
    Repository Name: Woods Hole Open Access Server
    Type: Working Paper
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-11-03
    Description: EXport Processes in the Ocean from Remote Sensing (EXPORTS) is a large-scale NASA-led and NSF co-funded field campaign that will provide critical information for quantifying the export and fate of upper ocean net primary production (NPP) using satellite information and state of the art technology.
    Keywords: NASA/TM-20205007358
    Repository Name: Woods Hole Open Access Server
    Type: Working Paper
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Siegel, D. A., Cetinic, I., Graff, J. R., Lee, C. M., Nelson, N., Perry, M. J., Ramos, I. S., Steinberg, D. K., Buesseler, K., Hamme, R., Fassbender, A. J., Nicholson, D., Omand, M. M., Robert, M., Thompson, A., Amaral, V., Behrenfeld, M., Benitez-Nelson, C., Bisson, K., Boss, E., Boyd, P. W., Brzezinski, M., Buck, K., Burd, A., Burns, S., Caprara, S., Carlson, C., Cassar, N., Close, H. H., D’Asaro, E., Durkin, C., Erickson, Z., Estapa, M. L., Fields, E., Fox, J., Freeman, S., Gifford, S., Gong, W., Gray, D., Guidi, L., Haëntjens, N., Halsey, K., Huot, Y., Hansell, D., Jenkins, B., Karp-Boss, L., Kramer, S., Lam, P., Lee, J-M., Maas, A., Marchal, O., Marchetti, A., McDonnell, A., McNair, H., Menden-Deuer, S., Morison, F., Niebergall, A. K., Passow, U., Popp, B., Potvin, G., Resplandy, L., Roca-Martí, M., Roesler, C., Rynearson, T., Traylor, S., Santoro, A., Seraphin, K. D., Sosik, H. M., Stamieszkin, K., Stephens, B., Tang, W., Van Mooy, B., Xiong, Y., Zhang, X. An operational overview of the EXport Processes in the Ocean from RemoTe Sensing (EXPORTS) Northeast Pacific field deployment. Elementa: Science of the Anthropocene, 9(1), (2021): 1, https://doi.org/10.1525/elementa.2020.00107.
    Description: The goal of the EXport Processes in the Ocean from RemoTe Sensing (EXPORTS) field campaign is to develop a predictive understanding of the export, fate, and carbon cycle impacts of global ocean net primary production. To accomplish this goal, observations of export flux pathways, plankton community composition, food web processes, and optical, physical, and biogeochemical (BGC) properties are needed over a range of ecosystem states. Here we introduce the first EXPORTS field deployment to Ocean Station Papa in the Northeast Pacific Ocean during summer of 2018, providing context for other papers in this special collection. The experiment was conducted with two ships: a Process Ship, focused on ecological rates, BGC fluxes, temporal changes in food web, and BGC and optical properties, that followed an instrumented Lagrangian float; and a Survey Ship that sampled BGC and optical properties in spatial patterns around the Process Ship. An array of autonomous underwater assets provided measurements over a range of spatial and temporal scales, and partnering programs and remote sensing observations provided additional observational context. The oceanographic setting was typical of late-summer conditions at Ocean Station Papa: a shallow mixed layer, strong vertical and weak horizontal gradients in hydrographic properties, sluggish sub-inertial currents, elevated macronutrient concentrations and low phytoplankton abundances. Although nutrient concentrations were consistent with previous observations, mixed layer chlorophyll was lower than typically observed, resulting in a deeper euphotic zone. Analyses of surface layer temperature and salinity found three distinct surface water types, allowing for diagnosis of whether observed changes were spatial or temporal. The 2018 EXPORTS field deployment is among the most comprehensive biological pump studies ever conducted. A second deployment to the North Atlantic Ocean occurred in spring 2021, which will be followed by focused work on data synthesis and modeling using the entire EXPORTS data set.
    Description: DAS, NN, KB, EF, SK, AB, AM, UP: NASA 80NSSC17K0692. MJB, EB, JG, LG, KH, LKB, JF, NH: NASA 80NSSC17K0568. KB, CBN, LR, MRM: NASA 80NSSC17K0555. CC, DH, BS: NASA 80NSSC18K0437. HC: NSF 1830016. BP, KDS: NSF 1829425. ME, KB, CD, MO: NASA 80NSSC17K0662. AF: NSF 1756932. BJ, KB, MB, SB, SC: NSF 1756442. PH, OM, JML: NSF 1829614. CL, ED, DN, MO, MJP, AT, ZN, ST: NASA 80NSSC17K0663. AM, NC, SG, WT, AN, WG: NASA 80NSSC17K0552. SMD, TR, HM, FM: NASA 80NSSC17K0716. CR, HS: NASA 80NSSC17K0700. AS, PB: NASA 80NSSC18K1431. DS, AM, KS NASA 80NSSC17K0654. BVM: NSF 1756254. XZ, DG, LG, YH: NASA 80NSSC17K0656 and 80NSSC20K0350.
    Keywords: Biological pump ; NASA field campaign ; NPP fates ; Carbon cycle ; Organic carbon export ; Export pathways
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Estapa, M., Buesseler, K., Durkin, C. A., Omand, M., Benitez-Nelson, C. R., Roca-Marti, M., Breves, E., Kelly, R. P., & Pike, S. Biogenic sinking particle fluxes and sediment trap collection efficiency at Ocean Station Papa. Elementa: Science of the Anthropocene, 9(1), (2021): 00122, https://doi.org/10.1525/elementa.2020.00122.
    Description: Comprehensive field observations characterizing the biological carbon pump (BCP) provide the foundation needed to constrain mechanistic models of downward particulate organic carbon (POC) flux in the ocean. Sediment traps were deployed three times during the EXport Processes in the Ocean from RemoTe Sensing campaign at Ocean Station Papa in August–September 2018. We propose a new method to correct sediment trap sample contamination by zooplankton “swimmers.” We consider the advantages of polyacrylamide gel collectors to constrain swimmer influence and estimate the magnitude of possible trap biases. Measured sediment trap fluxes of thorium-234 are compared to water column measurements to assess trap performance and estimate the possible magnitude of fluxes by vertically migrating zooplankton that bypassed traps. We found generally low fluxes of sinking POC (1.38 ± 0.77 mmol C m–2 d–1 at 100 m, n = 9) that included high and variable contributions by rare, large particles. Sinking particle sizes generally decreased between 100 and 335 m. Measured 234Th fluxes were smaller than water column 234Th fluxes by a factor of approximately 3. Much of this difference was consistent with trap undersampling of both small (〈32 μm) and rare, large particles (〉1 mm) and with zooplankton active migrant fluxes. The fraction of net primary production exported below the euphotic zone (0.1% light level; Ez-ratio = 0.10 ± 0.06; ratio uncertainties are propagated from measurements with n = 7–9) was consistent with prior, late summer studies at Station P, as was the fraction of material exported to 100 m below the base of the euphotic zone (T100, 0.55 ± 0.35). While both the Ez-ratio and T100 parameters varied weekly, their product, which we interpret as overall BCP efficiency, was remarkably stable (0.055 ± 0.010), suggesting a tight coupling between production and recycling at Station P.
    Description: The authors would like to acknowledge funding support from the NASA EXPORTS program (Award 80NSSC17K0662) for all sediment trap data presented here. Net primary production data collection was supported by EXPORTS (Award 80NSSC17K568) to Oregon State University. Thorium data collection was supported by EXPORTS (Award 80NSSC17K0555) to KB, CRBN, and L. Resplandy.
    Keywords: Biological carbon pump ; Ocean Station Papa ; Sediment traps ; Carbon flux ; Particle size distribution ; Swimmers
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-27
    Description: Dataset: Phytoplankton Orientation - 4 Diatom Species
    Description: This dataset includes data on the orientation and growth of colonies of four diatom species (Stephanopyxis turris, Pseudo-nitzschia sp., Skeletonema sp., and Odontella sinensis) in Couette flow. Experiments were conducted at Harbor Branch Oceanographic Institute in Fort Pierce, FL, USA from March 2020 to June 2021. Data are provided from all replicates and summary data (means) are provided as a Supplemental File. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/864069
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-1657332
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Thorrold, S. R., Adams, A., Bucklin, A., Buesseler, K., Fischer, G., Govindarajan, A., Hoagland, P., Jin, D., Lavery, A., Llopez, J., Madin, L., Omand, M., Renaud, P. G., Sosik, H. M., Wiebe, P., Yoerger, D. R., & Zhang, W. Twilight zone observation network: a distributed observation network for sustained, real-time interrogation of the Ocean’s Twilight Zone. Marine Technology Society Journal, 55(3), (2021): 92–93, https://doi.org/10.4031/MTSJ.55.3.46.
    Description: The ocean's twilight zone (TZ) is a vast, globe-spanning region of the ocean. Home to myriad fishes and invertebrates, mid-water fishes alone may constitute 10 times more biomass than all current ocean wild-caught fisheries combined. Life in the TZ supports ocean food webs and plays a critical role in carbon capture and sequestration. Yet the ecological roles that mesopelagic animals play in the ocean remain enigmatic. This knowledge gap has stymied efforts to determine the effects that extraction of mesopelagic biomass by industrial fisheries, or alterations due to climate shifts, may have on ecosystem services provided by the open ocean. We propose to develop a scalable, distributed observation network to provide sustained interrogation of the TZ in the northwest Atlantic. The network will leverage a “tool-chest” of emerging and enabling technologies including autonomous, unmanned surface and underwater vehicles and swarms of low-cost “smart” floats. Connectivity among in-water assets will allow rapid assimilation of data streams to inform adaptive sampling efforts. The TZ observation network will demonstrate a bold new step towards the goal of continuously observing vast regions of the deep ocean, significantly improving TZ biomass estimates and understanding of the TZ's role in supporting ocean food webs and sequestering carbon.
    Description: This research is part of the Woods Hole Oceanographic Institution’s Ocean Twilight Zone Project, funded as part of The Audacious Project housed at TED.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...