GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Pfeil, Benjamin; Olsen, Are; Bakker, Dorothee C E; Hankin, Steven; Koyuk, Heather; Kozyr, Alexander; Malczyk, Jeremy; Manke, Ansley; Metzl, Nicolas; Sabine, Christopher L; Akl, John; Alin, Simone R; Bellerby, Richard G J; Borges, Alberto Vieira; Boutin, Jacqueline; Brown, Peter J; Cai, Wei-Jun; Chavez, Francisco P; Chen, Arthur; Cosca, Catherine E; Fassbender, Andrea J; Feely, Richard A; González-Dávila, Melchor; Goyet, Catherine; Hardman-Mountford, Nicolas J; Heinze, Christoph; Hood, E Maria; Hoppema, Mario; Hunt, Christopher W; Hydes, David; Ishii, Masao; Johannessen, Truls; Jones, Steve D; Key, Robert M; Körtzinger, Arne; Landschützer, Peter; Lauvset, Siv K; Lefèvre, Nathalie; Lenton, Andrew; Lourantou, Anna; Merlivat, Liliane; Midorikawa, Takashi; Mintrop, Ludger J; Miyazaki, Chihiro; Murata, Akihiko; Nakadate, Akira; Nakano, Yoshiyuki; Nakaoka, Shin-Ichiro; Nojiri, Yukihiro; Omar, Abdirahman M; Padín, Xose Antonio; Park, Geun-Ha; Paterson, Kristina; Pérez, Fiz F; Pierrot, Denis; Poisson, Alain; Ríos, Aida F; Santana-Casiano, Juana Magdalena; Salisbury, Joe; Sarma, Vedula V S S; Schlitzer, Reiner; Schneider, Bernd; Schuster, Ute; Sieger, Rainer; Skjelvan, Ingunn; Steinhoff, Tobias; Suzuki, Toru; Takahashi, Taro; Tedesco, Kathy; Telszewski, Maciej; Thomas, Helmuth; Tilbrook, Bronte; Tjiputra, Jerry; Vandemark, Doug; Veness, Tony; Wanninkhof, Rik; Watson, Andrew J; Weiss, Ray F; Wong, Chi Shing; Yoshikawa-Inoue, Hisayuki (2013): A uniform, quality controlled Surface Ocean CO2 Atlas (SOCAT). Earth System Science Data, 5(1), 125-143, https://doi.org/10.5194/essd-5-125-2013
    Publication Date: 2024-05-02
    Description: A well-documented, publicly available, global data set of surface ocean carbon dioxide (CO2) parameters has been called for by international groups for nearly two decades. The Surface Ocean CO2 Atlas (SOCAT) project was initiated by the international marine carbon science community in 2007 with the aim of providing a comprehensive, publicly available, regularly updated, global data set of marine surface CO2, which had been subject to quality control (QC). Many additional CO2 data, not yet made public via the Carbon Dioxide Information Analysis Center (CDIAC), were retrieved from data originators, public websites and other data centres. All data were put in a uniform format following a strict protocol. Quality control was carried out according to clearly defined criteria. Regional specialists performed the quality control, using state-of-the-art web-based tools, specially developed for accomplishing this global team effort. SOCAT version 1.5 was made public in September 2011 and holds 6.3 million quality controlled surface CO2 data points from the global oceans and coastal seas, spanning four decades (1968-2007). Three types of data products are available: individual cruise files, a merged complete data set and gridded products. With the rapid expansion of marine CO2 data collection and the importance of quantifying net global oceanic CO2 uptake and its changes, sustained data synthesis and data access are priorities.
    Keywords: 0306SFC_PRT; 061ASFC_PRT; 06AQ19860627-track; 06AQ19860928-track; 06AQ19911114-track; 06AQ19911210-track; 06AQ19921005-track; 06AQ19930128-track; 06AQ19930228-track; 06AQ19931019-track; 06AQ19940524-track; 06AQ19951206-track; 06AQ19960320-track; 06AQ19980411-track; 06AQ19990327-track; 06AQ20001004-track; 06AQ20001026-track; 06BE19961010-track; 06CK20060523-track; 06CK20060715-track; 06CK20060821-track; 06GA19960613-track; 06GA276_3; 06LB19831130-track; 06LB19840107-track; 06LB19840629-track; 06LB19850110-track; 06LB19850313-track; 06LB19850812-track; 06LB19860116-track; 06LB19860323-track; 06LB19860801-track; 06LB19861011-track; 06LB19861214-track; 06LB19870221-track; 06LB19870501-track; 06LB19870721-track; 06LB19870920-track; 06LB19871126-track; 06LB19871231-track; 06LB19880204-track; 06MT18_1; 06MT19910903-track; 06MT19920510-track; 06MT19921229-track; 06MT19941012-track; 06MT19941119-track; 06MT19950714-track; 06MT19960607-track; 06MT19960622-track; 06MT19970106-track; 06MT19970516-track; 06MT19970707-track; 06MT19970814-track; 06MT19981228-track; 06MT20021015-track; 06MT20060714; 06MT20060714-track; 06MT22_5; 06MT30_2; 06MT30_3; 06MT37_2; 06MT39_4; 06MT39_5; 06P119910616-track; 06P119950901-track; 06PO20050321; 06PO20050322-track; 07AL19951011-track; 07AL19960218-track; 07AL19970503-track; 07AL19990718-track; 07AL19991101-track; 07AL19991129-track; 07AL20000113-track; 07AL20000210-track; 07AL20000305-track; 07AL20010513-track; 07AL20010607-track; 07AL20010709-track; 07AL20010802-track; 09AR0103; 09AR19910926-track; 09AR19921019-track; 09AR19930105-track; 09AR19930311-track; 09AR19930807-track; 09AR19931119-track; 09AR19940101-track; 09AR19940831-track; 09AR19941213-track; 09AR19950717-track; 09AR19950916-track; 09AR19960119-track; 09AR19960822-track; 09AR19970910-track; 09AR19971114-track; 09AR19980228-track; 09AR19980404-track; 09AR19980715-track; 09AR19990716-track; 09AR20011031-track; 09AR9401; 09AR9404; 09AR9407; 09AR9501; 09AR9502; 09AR9601; 09AR9604; 09AR9701; 09AR9703; 09AR9707; 09AR9801; 09AR9806; 09AR9901; 09FA20000927-track; 09SS19951116-track; 09SS19990205-track; 11BE19940413-track; 11BE19950303-track; 11BE19950912-track; 11BE19970513-track; 11BE19970527-track; 11BE19970609-track; 11BE19970618-track; 11BE19970621; 11BE19970621-track; 11BE19970702-track; 11BE19980107-track; 11BE19980614-track; 11BE19980625-track; 11BE19980710-track; 11BE19990830-track; 11BE19990904-track; 11BE19990914-track; 11BE19990918-track; 11BE20010502-track; 11BE20010514-track; 11BE20010522-track; 11BE20020422-track; 11BE20020511-track; 11BE20020528-track; 11BE20021104-track; 11BE20030331-track; 11BE20030901; 11BE20030901-track; 11BE20031027; 11BE20031027-track; 11BE20031208; 11BE20031208-track; 11BE20040223; 11BE20040223-track; 11BE20040329; 11BE20040329-track; 11BE20040524; 11BE20040524-track; 11BE20040601-track; 11BE20041004; 11BE20041004-track; 11BE20060425; 11BE20060425-track; 11BE20060529-track; 11BE20070507-track; 18QA19730812-track; 18QA19731028-track; 18QA19760111-track; 18QA19760619-track; 18QA19760911-track; 18QA19761204-track; 18VC19740105-track; 18VC19740216-track; 18VC19741113-track; 18VC19750622-track; 18VC19750913-track; 1995-10-BS; 1996-02-BS; 1997-05-BS; 1999-07-BS; 1999-11-BS; 1999-12-BS; 2000-01-BS; 2000-02-BS; 2000-03-BS; 2001-05-BS; 2001-06-BS; 2001-07-BS; 2001-08-BS; 2003-06-BS; 2003-07-BS; 2003-08-BS; 2003-09-BS; 2003-10-BS; 2004-02-BS; 2004-03-BS; 2004-04-BS; 2004-05-BS; 2004-06-BS; 2004-07-BS; 2004-08-BS; 2004-09-BS; 2004-10-BS; 2005-01-BS; 2005-02-BS; 2005-03-BS; 2005-04-BS; 2005-05-BS; 2005-06-BS; 2005-07-BS; 2005-08-BS; 2005-09-BS; 2005-10-BS; 2005-11-BS; 2005-12-BS; 2006-03-BS; 2006-04-BS; 2006-05-BS; 2006-06-BS; 2006-07-BS; 2006-08-BS; 2006-09-BS; 20070110_TC2; 20070117_TC2; 20070123_TC2; 20070130_TC2; 20070207_TC2; 20070219_TC2; 20070227_TC2; 20070305_TC2; 20070320_TC2; 20070327_TC2; 20070402_TC2; 20070409_TC2; 20070416_TC2; 20070423_TC2; 20070430_TC2; 20070508_TC2; 20070515_TC2; 20070521_TC2; 20070529_TC2; 20070604_TC2; 20070613_TC2; 20070620_TC2; 20070627_TC2; 20070703_TC2; 20070709_TC2; 20070716_TC2; 20070723_TC2; 20070730_TC2; 2007-07-BS; 20070806_TC2; 20070815_TC2; 20070820_TC2; 20070827_TC2; 2007-08-BS; 20070903_TC2; 20070910_TC2; 20070917_TC2; 20071001_TC2; 20071008_TC2; 20071010_TC2; 20071015_TC2; 20071023_TC2; 20071105_TC2; 20071115_TC2; 20071120_TC2; 20071128_TC2; 20071204_TC2; 20071211_TC2; 20071218_TC2; 20071225_TC2; 24N98L1; 24N98L2; 26GC20010421-track; 26GC20010831-track; 26NA20050107; 26NA20050107-track; 26NA20050115; 26NA20050115-track; 26NA20050130; 26NA20050130-track; 26NA20050207; 26NA20050207-track; 26NA20050317; 26NA20050317-track; 26NA20050321; 26NA20050321-track; 26NA20050402; 26NA20050402-track; 26NA20050420; 26NA20050420-track; 26NA20050502; 26NA20050502-track; 26NA20050511; 26NA20050511-track; 26NA20050523; 26NA20050523-track; 26NA20050531; 26NA20050531-track; 26NA20050614; 26NA20050614-track; 26NA20050624; 26NA20050624-track; 26NA20050714; 26NA20050714-track; 26NA20050720; 26NA20050720-track; 26NA20050730; 26NA20050730-track; 26NA20050805; 26NA20050805-track; 26NA20050815; 26NA20050815-track; 26NA20050824; 26NA20050824-track; 26NA20050914; 26NA20050914-track; 26NA20050927; 26NA20050927-track; 26NA20051005; 26NA20051005-track; 26NA20051018; 26NA20051018-track; 26NA20051026; 26NA20051026-track; 26NA20051110; 26NA20051110-track; 26NA20051117; 26NA20051117-track; 26NA20051130; 26NA20051130-track; 26NA20060518; 26NA20060518-track; 26NA20060527; 26NA20060527-track; 26NA20060607; 26NA20060607-track; 26NA20060617; 26NA20060617-track; 26NA20060628; 26NA20060628-track; 26NA20060708; 26NA20060708-track; 26NA20060719; 26NA20060719-track; 26NA20060728; 26NA20060728-track; 26NA20060809; 26NA20060809-track; 26NA20060818; 26NA20060818-track; 26NA20060830; 26NA20060830-track; 26NA20060908; 26NA20060908-track; 26NA20060920; 26NA20060920-track; 26NA20061011; 26NA20061011-track; 26NA20061021; 26NA20061021-track; 26NA20061128; 26NA20061128-track; 26NA20061202; 26NA20061202-track; 26NA20061214; 26NA20061214-track; 26NA20061225; 26NA20061225-track; 26NA20070103; 26NA20070103-track; 26NA20070112; 26NA20070112-track; 26NA20070125; 26NA20070125-track; 26NA20070205; 26NA20070205-track; 26NA20070216; 26NA20070216-track; 26NA20070323; 26NA20070323-track; 26NA20070329; 26NA20070329-track; 26NA20070410; 26NA20070410-track; 26NA20070418; 26NA20070418-track; 26NA20070427; 26NA20070427-track; 26NA20070509; 26NA20070509-track; 26NA20070518; 26NA20070518-track; 26NA20070530; 26NA20070530-track; 26NA20070610; 26NA20070610-track; 26NA20070622; 26NA20070622-track; 26NA20070701; 26NA20070701-track; 26NA20070712; 26NA20070712-track; 26NA20070721; 26NA20070721-track; 26NA20070802; 26NA20070802-track; 26NA20070811; 26NA20070811-track; 26NA20070901; 26NA20070901-track; 26NA20070912; 26NA20070912-track; 26NA20070923; 26NA20070923-track; 26NA20071003; 26NA20071003-track; 26NA20071014; 26NA20071014-track; 26NA20071024; 26NA20071024-track; 26NA20071103; 26NA20071103-track; 26NA20071114; 26NA20071114-track; 26NA20071124; 26NA20071124-track; 29HE050; 29HE19980729-track; 29HE20001028; 29HE20001028-track; 29HE20010306; 29HE20010306-track; 29HE20011027; 29HE20011027-track; 29HE20020305; 29HE20020305-track; 29HE20021028; 29HE20021028-track; 29HE20030409; 29HE20030409-track; 29HE20041021; 29HE20041021-track; 316N0154; 316N19810401-track; 316N19810416-track; 316N19810516-track; 316N19810619-track; 316N19810721-track; 316N19810821-track; 316N19810923-track; 316N19821202-track; 316N19821230-track; 316N19830130-track; 316N19831007-track; 316N19840111-track; 316N19871030-track; 316N19871123-track; 316N19871218-track; 316N19880128-track; 316N19940404-track; 316N19941201-track; 316N19950124-track; 316N19950310-track; 316N19950423-track; 316N19950611-track; 316N19950715-track; 316N19950829-track; 316N19951111-track; 316N19951205-track; 316N19961102-track; 316N19971005-track; 318M19780921-track; 318M19780928-track; 318M19790210-track; 318M19790308-track;
    Type: Dataset
    Format: application/zip, 1851 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-04-23
    Description: The questions that chemical oceanographers prioritize over the coming decades, and the methods we use to address these questions, will define our field's contribution to 21st century science. In recognition of this, the U.S. National Science Foundation and National Oceanic and Atmospheric Administration galvanized a community effort (the Chemical Oceanography MEeting: A BOttom-up Approach to Research Directions, or COME ABOARD) to synthesize bottom-up perspectives on selected areas of research in Chemical Oceanography. Representing only a small subset of the community, COME ABOARD participants did not attempt to identify targeted research directions for the field. Instead, we focused on how best to foster diverse research in Chemical Oceanography, placing emphasis on the following themes: strengthening our core chemical skillset; expanding our tools through collaboration with chemists, engineers, and computer scientists; considering new roles for large programs; enhancing interface research through interdisciplinary collaboration; and expanding ocean literacy by engaging with the public. For each theme, COME ABOARD participants reflected on the present state of Chemical Oceanography, where the community hopes to go and why, and actionable pathways to get there. A unifying concept among the discussions was that dissimilar funding structures and metrics of success may be required to accommodate the various levels of readiness and stages of knowledge development found throughout our community. In addition to the science, participants of the concurrent Dissertations Symposium in Chemical Oceanography (DISCO) XXV, a meeting of recent and forthcoming Ph.D. graduates in Chemical Oceanography, provided perspectives on how our field could show leadership in addressing long-standing diversity and early-career challenges that are pervasive throughout science. Here we summarize the COME ABOARD Meeting discussions, providing a synthesis of reflections and perspectives on the field.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-01-31
    Description: Ocean boundary current systems are key components of the climate system, are home to highly productive ecosystems, and have numerous societal impacts. Establishment of a global network of boundary current observing systems is a critical part of ongoing development of the Global Ocean Observing System. The characteristics of boundary current systems are reviewed, focusing on scientific and societal motivations for sustained observing. Techniques currently used to observe boundary current systems are reviewed, followed by a census of the current state of boundary current observing systems globally. The next steps in the development of boundary current observing systems are considered, leading to several specific recommendations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-04-08
    Description: State of the climate in 2019
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Global Biogeochemical Cycles 32 (2018): 1476-1497, doi:10.1029/2017GB005855.
    Description: It has become clear that anthropogenic carbon invasion into the surface ocean drives changes in the seasonal cycles of carbon dioxide partial pressure (pCO2) and pH. However, it is not yet known whether the resulting sea‐air CO2 fluxes are symmetric in their seasonal expression. Here we consider a novel application of observational constraints and modeling inferences to test the hypothesis that changes in the ocean's Revelle factor facilitate a seasonally asymmetric response in pCO2 and the sea‐air CO2 flux. We use an analytical framework that builds on observed sea surface pCO2 variability for the modern era and incorporates transient dissolved inorganic carbon concentrations from an Earth system model. Our findings reveal asymmetric amplification of pCO2 and pH seasonal cycles by a factor of two (or more) above preindustrial levels under Representative Concentration Pathway 8.5. These changes are significantly larger than observed modes of interannual variability and are relevant to climate feedbacks associated with Revelle factor perturbations. Notably, this response occurs in the absence of changes to the seasonal cycle amplitudes of dissolved inorganic carbon, total alkalinity, salinity, and temperature, indicating that significant alteration of surface pCO2 can occur without modifying the physical or biological ocean state. This result challenges the historical paradigm that if the same amount of carbon and nutrients is entrained and subsequently exported, there is no impact on anthropogenic carbon uptake. Anticipation of seasonal asymmetries in the sea surface pCO2 and CO2 flux response to ocean carbon uptake over the 21st century may have important implications for carbon cycle feedbacks.
    Description: Cooperative Institute for Climate Science Grant Number: NA17RJ2612; David and Lucile Packard Foundation/MBARI Grant Number: 4696; NOAA Office of Climate Observations Grant Number: NA11OAR4310066; NOAA. Grant Number NA11OAR4310066; KBR Grant Numbers: A08OAR4320752, NA17RJ2612
    Keywords: Revelle Factor ; Carbon cycle ; Seasonal cycle ; CO2 fluxes ; Ocean acidification
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-10-31
    Description: Dataset: Discrete C and N near Station P
    Description: This dataset includes observations of dissolved and particulate carbon and nitrogen from seawater samples collected during CCGS John P. Tully cruises from 2018 to 2020 in the northeast Pacific Ocean from Vancouver Island to Station P. Associated parameters such as dissolved inorganic carbon (DIC), total alkalinity (TA), and pH were also measured. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/865893
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-2032754, NSF Division of Ocean Sciences (NSF OCE) OCE-1756932
    Keywords: Particulate carbon ; Particulate nitrogen ; Inorganic carbon ; North Pacific ; Line P ; EXPORTS
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-10-31
    Description: Dataset: Underway pH data near Line P
    Description: The pH (in situ, total scale) of near surface seawater was measured from the CCGS John P. Tully while underway during three Canadian Line P cruises conducted from 2019 through 2020. A prototype instrument, BGC-SUMO (Y. Takeshita, MBARI), was plumbed into the ship's seawater intake line to measure near surface pH while a collocated thermosalinograph measured near surface salinity and temperature from the same flow stream. This dataset provides information on these properties. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/866582
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-2032754, NSF Division of Ocean Sciences (NSF OCE) OCE-1756932
    Keywords: Underway pH ; Inorganic carbon ; Line P ; EXPORTS
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Todd, R. E., Chavez, F. P., Clayton, S., Cravatte, S., Goes, M., Greco, M., Ling, X., Sprintall, J., Zilberman, N., V., Archer, M., Aristegui, J., Balmaseda, M., Bane, J. M., Baringer, M. O., Barth, J. A., Beal, L. M., Brandt, P., Calil, P. H. R., Campos, E., Centurioni, L. R., Chidichimo, M. P., Cirano, M., Cronin, M. F., Curchitser, E. N., Davis, R. E., Dengler, M., deYoung, B., Dong, S., Escribano, R., Fassbender, A. J., Fawcett, S. E., Feng, M., Goni, G. J., Gray, A. R., Gutierrez, D., Hebert, D., Hummels, R., Ito, S., Krug, M., Lacan, F., Laurindo, L., Lazar, A., Lee, C. M., Lengaigne, M., Levine, N. M., Middleton, J., Montes, I., Muglia, M., Nagai, T., Palevsky, H., I., Palter, J. B., Phillips, H. E., Piola, A., Plueddemann, A. J., Qiu, B., Rodrigues, R. R., Roughan, M., Rudnick, D. L., Rykaczewski, R. R., Saraceno, M., Seim, H., Sen Gupta, A., Shannon, L., Sloyan, B. M., Sutton, A. J., Thompson, L., van der Plas, A. K., Volkov, D., Wilkin, J., Zhang, D., & Zhang, L. Global perspectives on observing ocean boundary current systems. Frontiers in Marine Science, 6, (2010); 423, doi: 10.3389/fmars.2019.00423.
    Description: Ocean boundary current systems are key components of the climate system, are home to highly productive ecosystems, and have numerous societal impacts. Establishment of a global network of boundary current observing systems is a critical part of ongoing development of the Global Ocean Observing System. The characteristics of boundary current systems are reviewed, focusing on scientific and societal motivations for sustained observing. Techniques currently used to observe boundary current systems are reviewed, followed by a census of the current state of boundary current observing systems globally. The next steps in the development of boundary current observing systems are considered, leading to several specific recommendations.
    Description: RT was supported by The Andrew W. Mellon Foundation Endowed Fund for Innovative Research at WHOI. FC was supported by the David and Lucile Packard Foundation. MGo was funded by NSF and NOAA/AOML. XL was funded by China’s National Key Research and Development Projects (2016YFA0601803), the National Natural Science Foundation of China (41490641, 41521091, and U1606402), and the Qingdao National Laboratory for Marine Science and Technology (2017ASKJ01). JS was supported by NOAA’s Global Ocean Monitoring and Observing Program (Award NA15OAR4320071). DZ was partially funded by the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative Agreement NA15OAR4320063. BS was supported by IMOS and CSIRO’s Decadal Climate Forecasting Project. We gratefully acknowledge the wide range of funding sources from many nations that have enabled the observations and analyses reviewed here.
    Keywords: Western boundary current systems ; Eastern boundary current systems ; Ocean observing systems ; Time series ; Autonomous underwater gliders ; Drifters ; Remote sensing ; Moorings
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-27
    Description: Dataset: DOC and TOC near Station P
    Description: This dataset includes observations of dissolved organic carbon and total organic carbon from seawater samples collected during CCGS John P. Tully cruises from 2018 to 202 in the northeast Pacific Ocean from Vancouver Island to Station P. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/865829
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-2032754, NSF Division of Ocean Sciences (NSF OCE) OCE-1756932
    Keywords: Organic Carbon ; North Pacific ; Line P ; EXPORTS
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-07-15
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Roemmich, D., Talley, L., Zilberman, N., Osborne, E., Johnson, K., Barbero, L., Bittig, H., Briggs, N., Fassbender, A., Johnson, G., King, B., McDonagh, E., Purkey, S., Riser, S., Suga, T., Takeshita, Y., Thierry, V., & Wijffels, S. The technological, scientific, and sociological revolution of global subsurface ocean observing. Oceanography, 34(4), (2021): 2-8, https://doi.org/10.5670/oceanog.2021.supplement.02-02.
    Description: The complementary partnership of the Global Ocean Ship-based Hydrographic Investigations Program (GO-SHIP; https://www.go-ship.org/) and the Argo Program (https://argo.ucsd.edu) has been instrumental in providing sustained subsurface observations of the global ocean for over two decades. Since the late twentieth century, new clues into the ocean’s role in Earth’s climate system have revealed a need for sustained global ocean observations (e.g., Gould et al., 2013; Schmitt, 2018) and stimulated revolutionary technology advances needed to address the societal mandate. Together, the international GO-SHIP and Argo Program responded to this need, providing insight into the mean state and variability of the physics, biology, and chemistry of the ocean that led to advancements in fundamental science and monitoring of the state of Earth's climate.
    Description: The authors gratefully acknowledge support from their respective Argo and GO-SHIP national programs or national agencies, which have made these programs possible.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...