GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 125(5), (2020): e2020JC016123, doi:10.1029/2020JC016123.
    Description: The processes underlying the strong Kuroshio encountering a cape at the southernmost tip of Taiwan are examined with satellite‐derived chlorophyll and temperature maps, a drifter trajectory, and realistic model simulations. The interaction spurs the formation of submesoscale cyclonic eddies that trap cold and high‐chlorophyll water and the formation of frontal waves between the free stream and the wake flow. An observed train of eddies, which have relative vorticity about one to four times the planetary vorticity (f), is shed from the recirculation that occurs in the immediate lee of the cape as a result of flow separation. These propagate downstream at a speed of 0.5–0.6 m s−1. Farther downstream, the corotation and merging of two or three adjacent eddies are common owing to the topography‐induced slowdown of eddy propagation farther downstream. It is found that the relative vorticity of a corotating system (1.2f) is 70% weaker than that of a single eddy due to the increase of eddy diameter from ~16 to ~33 km, in agreement with Kelvin's circulation theorem. The shedding period of the submesoscale eddies is strongly modulated by either diurnal or semidiurnal tidal flows, which typically reach 0.2–0.5 m s−1, whereas its intrinsic shedding period is insignificant. The frontal waves predominate in the horizontal free shear layer emitted from the cape, as well as a density front. Energetics analysis suggests that the wavy features result primarily from the growth of barotropic instability in the free shear layer, which may play a secondary process in the headland wake.
    Description: Yu‐Hsin Cheng was supported by the CWB of Taiwan through Grant 1062076C. Ming‐Huei Chang was supported by the Ministry of Science and Technology of Taiwan (MOST) under Grants 103‐2611‐M‐002‐018, 105‐2611‐M‐002‐012, and 107‐2611‐M‐002‐015. Sen Jan was supported with MOST Grants 101‐2611‐M‐002‐018‐MY3, 103‐2611‐M‐002‐011, and 105‐2119‐M‐002‐042. Magdalena Andres was supported by the U.S. Office of Naval Research Grant N000141613069.
    Description: 2020-10-23
    Keywords: Kuroshio ; Submesoscale eddy ; Headland ; Recirculation ; Eddy corotation ; Barotropic instability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Forsyth, J., Andres, M., & Gawarkiewicz, G. . Shelfreak jet structure and variability off New Jersey using ship of opportunity data from the CMV Oleander. Journal of Geophysical Research: Oceans, 125(9), (2020): e2020JC016455. doi:10.1029/2020JC016455.
    Description: Repeat measurements of velocity and temperature profiles from the Container Motor Vessel (CMV) Oleander provide an unprecedented look into the variability on the New Jersey Shelf and upper continental slope. Here 1362 acoustic Doppler current profiler (ADCP) velocity sections collected between 1994 and 2018 are analyzed in both Eulerian and stream coordinate reference frames to characterize the mean structure of the Shelfbreak Jet, as well as its seasonal to decadal variability. The Eulerian mean Shelfbreak Jet has a maximum jet velocity of 0.12 m s−1. The maximum jet velocity peaks in April and May and reaches its minimum in July and August. In a stream coordinate framework, the jet is only identified in 61% of transects, and the mean stream coordinate Shelfbreak Jet has a maximum jet velocity of 0.32 m s−1. Evidence is found that Warm Core Rings, originating from the Gulf Stream arriving in the Slope Sea adjacent to the New Jersey Shelf, shift the Shelfbreak Jet onshore of its mean position or entirely shutdown the Shelfbreak Jet's flow. At interannual timescales, variability in the Shelfbreak Jet velocity is correlated with the temperature on the New Jersey Shelf 2 months later. When considered in a stream coordinate framework, Shelfbreak Jet have decreased over the time period considered in the study.
    Description: J. F. and M. A. were supported by NSF OCE‐1634094 and OCE‐1924041. G. G was supported by NSF OCE‐1851261.
    Keywords: Shelfbreak Jet ; Middle Atlantic Bight ; Ship of opportunity ; Continental shelf processes ; Western Boundary Currents
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Andres, M., Siegelman, M., Hormann, V., Musgrave, R. C., Merrifield, S. T., Rudnick, D. L., Merrifield, M. A., Alford, M. H., Voet, G., Wijesekera, H. W., MacKinnon, J. A., Centurioni, L., Nash, J. D., & Terrill, E. J. Eddies, topography, and the abyssal flow by the Kyushu-Palau Ridge near Velasco Reef. Oceanography, 32(4), (2019): 46-55, doi: 10.5670/oceanog.2019.410.
    Description: Palau, an island group in the tropical western North Pacific at the southern end of Kyushu-Palau Ridge, sits near the boundary between the westward-​flowing North Equatorial Current (NEC) and the eastward-flowing North Equatorial Countercurrent. Combining remote-sensing observations of the sea surface with an unprecedented in situ set of subsurface measurements, we examine the flow near Palau with a particular focus on the abyssal circulation and on the deep expression of mesoscale eddies in the region. We find that the deep currents time-averaged over 10 months are generally very weak north of Palau and not aligned with the NEC in the upper ocean. This weak abyssal flow is punctuated by the passing of mesoscale eddies, evident as sea surface height anomalies, that disrupt the mean flow from the surface to the seafloor. Eddy influence is observed to depths exceeding 4,200 m. These deep-​reaching mesoscale eddies typically propagate westward past Palau, and as they do, any associated deep flows must contend with the topography of the Kyushu-Palau Ridge. This interaction leads to vertical structure far below the main thermocline. Observations examined here for one particularly strong and well-sampled eddy suggest that the flow was equivalent barotropic in the far field east and west of the ridge, with a more complicated vertical structure in the immediate vicinity of the ridge by the tip of Velasco Reef.
    Description: We gratefully acknowledge the help of Captain David Murline and the crew of R/V Roger Revelle and the shore-based assistance of Lori Colin and Pat Colin of the Coral Reef Research Foundation. We sincerely thank Terri Paluszkiewicz for her steadfast support of basic research programs, including FLEAT, during her many years of service to the community as Office of Naval Research (ONR) Physical Oceanography Program Manager. MA was supported by ONR grant N000141612668, MS and MAM by N00014-16-1-2671, MHA and JAM by N00014-15-1-2264 and N00014-16-1-3070, GV by N00014-15-1-2592, DLR by N00014- 15-1-2488, and STM and EJT by N00014-15-1-2304. VH and LC were supported by ONR grant N00014-15-1-2286 and NOAA GDP grant NA15OAR4320071. RCM was supported by the Postdoctoral Scholar Program at the Wood Hole Oceanographic Institution, with funding provided by the Weston Howland Jr. Postdoctoral Scholarship. We thank the Palau National Government for permission to carry out the research in Palau.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Geophysical Union
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Andres, M. Spatil and temporal variability of the Gulf Stream near Cape Hatteras. Journal of Geophysical Research: Oceans, 126(9), (2021): e2021JC017579, https://doi.org/10.1029/2021JC017579.
    Description: In situ observations from a 19-month deployment of current- and pressure-sensor equipped inverted echo sounders (CPIESs) along and across the Gulf Stream near Cape Hatteras capture spatial and temporal variability where this western boundary current separates from the continental margin. Regional hydrographic casts and two temperature cross-sections spanning the Gulf Stream southeast of Cape Hatteras are used with the CPIESs' records of acoustic travel time to infer changes in thermocline depth DT and Gulf Stream position. Wave-like Gulf Stream meanders are observed where the Stream approaches the separation location with periods less than 15 days, wavelengths less than 500-km, and phase speeds between 40 and 70 km d−1. Though meander amplitudes typically decrease by ∼30% on the final approach to Cape Hatteras, some signals are still coherent across the Gulf Stream separation location. Temporal variability in meander intensity may be related to the Loop Current ∼1,400 km upstream. Mesoscale variability is strongest downstream of the separation location where Gulf Stream position is no longer constrained by the steep continental slope. Low frequency transport changes in the Florida Straits are correlated with sea-surface height gradients along the entire South Atlantic Bight (SAB) and with DT inferred at the CPIES sites. The correlations with DT are likely due to coherent transport anomalies in the Gulf Stream approaching the separation location, which then drive Gulf Stream position changes downstream of the separation location. The patterns of coherent transport anomalies may reflect large-scale atmospheric forcing patterns or rapid equatorward propagation of barotropic signals along the SAB.
    Description: This research was supported by the National Science Foundation through grant OCE-1558521.
    Keywords: Altimetry ; Cape Hatteras ; CPIES ; Gulf Stream ; Meanders
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-27
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(11), (2020): 3267–3294, https://doi.org/10.1175/JPO-D-19-0310.1.
    Description: As part of the Flow Encountering Abrupt Topography (FLEAT) program, an array of pressure-sensor equipped inverted echo sounders (PIESs) was deployed north of Palau where the westward-flowing North Equatorial Current encounters the southern end of the Kyushu–Palau Ridge in the tropical North Pacific. Capitalizing on concurrent observations from satellite altimetry, FLEAT Spray gliders, and shipboard hydrography, the PIESs’ 10-month duration hourly bottom pressure p and round-trip acoustic travel time τ records are used to examine the magnitude and predictability of sea level and pycnocline depth changes and to track signal propagations through the array. Sea level and pycnocline depth are found to vary in response to a range of ocean processes, with their magnitude and predictability strongly process dependent. Signals characterized here comprise the barotropic tides, semidiurnal and diurnal internal tides, southeastward-propagating superinertial waves, westward-propagating mesoscale eddies, and a strong signature of sea level increase and pycnocline deepening associated with the region’s relaxation from El Niño to La Niña conditions. The presence of a broad band of superinertial waves just above the inertial frequency was unexpected and the FLEAT observations and output from a numerical model suggest that these waves detected near Palau are forced by remote winds east of the Philippines. The PIES-based estimates of pycnocline displacement are found to have large uncertainties relative to overall variability in pycnocline depth, as localized deep current variations arising from interactions of the large-scale currents with the abrupt topography around Palau have significant travel time variability.
    Description: Support for this research was provided by Office of Naval Research Grants N00014-16-1-2668, N00014-18-1-2406, N00014-15-1-2488, and N00014-15-1-2622. R.C.M. was additionally supported by the Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution, with funding provided by the Weston Howland Jr. Postdoctoral Scholarship.
    Keywords: Tropics ; Currents ; Eddies ; ENSO ; Internal waves ; Mesoscale processes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Perez, E., Ryan, S., Andres, M., Gawarkiewicz, G., Ummenhofer, C. C., Bane, J., & Haines, S. Understanding physical drivers of the 2015/16 marine heatwaves in the Northwest Atlantic. Scientific Reports, 11(1), (2021): 17623, https://doi.org/10.1038/s41598-021-97012-0.
    Description: The Northwest Atlantic, which has exhibited evidence of accelerated warming compared to the global ocean, also experienced several notable marine heatwaves (MHWs) over the last decade. We analyze spatiotemporal patterns of surface and subsurface temperature structure across the Northwest Atlantic continental shelf and slope to assess the influences of atmospheric and oceanic processes on ocean temperatures. Here we focus on MHWs from 2015/16 and examine their physical drivers using observational and reanalysis products. We find that a combination of jet stream latitudinal position and ocean advection, mainly due to warm core rings shed by the Gulf Stream, plays a role in MHW development. While both atmospheric and oceanic drivers can lead to MHWs they have different temperature signatures with each affecting the vertical structure differently and horizontal spatial patterns of a MHW. Northwest Atlantic MHWs have significant socio-economic impacts and affect commercially important species such as squid and lobster.
    Description: The work was supported by a Woods Hole Oceanographic Institution Summer Student Fellowship (to E.P.) through the National Science Foundation (NSF) REU under grant OCE-1852460, a Feodor-Lynen Fellowship by the Alexander von Humboldt Foundation and the WHOI Postdoctoral Scholar program (to S.R.), NSF grants OCE-1924041 (to M.A.) and OCE-1851261 (to G.G.) and OCE-1558920 (to J.B. and H. Seim at the Univ. of North Carolina), ONR grant N-14-19-1-2646 (to G.G.), and the James E. and Barbara V. Moltz Fellowship for Climate-Related Research (to C.C.U.).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-08-25
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Seim, H., Savidge, D., Andres, M., Bane, J., Edwards, C., Gawarkiewicz, G., He, R., Todd, R., Muglia, M., Zambon, J., Han, L., & Mao, S. Overview of the Processes driving Exchange at Cape Hatteras Program. Oceanography, (2022), https://doi.org/10.5670/oceanog.2022.205.
    Description: The Processes driving Exchange At Cape Hatteras (PEACH) program seeks to better understand seawater exchanges between the continental shelf and the open ocean near Cape Hatteras, North Carolina. This location is where the Gulf Stream transitions from a boundary-trapped current to a free jet, and where robust along-shelf convergence brings cool, relatively fresh Middle Atlantic Bight and warm, salty South Atlantic Bight shelf waters together, forming an important and dynamic biogeographic boundary. The magnitude of this convergence implies large export of shelf water to the open ocean here. Background on the oceanography of the region provides motivation for the study and gives context for the measurements that were made. Science questions focus on the roles that wind forcing, Gulf Stream forcing, and lateral density gradients play in driving exchange. PEACH observational efforts include a variety of fixed and mobile observing platforms, and PEACH modeling included two different resolutions and data assimilation schemes. Findings to date on mean circulation, the nature of export from the southern Middle Atlantic Bight shelf, Gulf Stream variability, and position variability of the Hatteras Front are summarized, together with a look ahead to forthcoming analyses.
    Description: We gratefully acknowledge NSF funding (OCE-1558920 to UNC-CH, OCE-1559476 to SkIO, OCE-1558521 to WHOI, OCE-1559178 to NCSU); technical support from Sara Haines, Craig Marquette, Trip Patterson, Nick DeSimone, Erran Sousa, Gabe Matthias, Patrick Deane, Brian Hogue, Frank Bahr, and Ben Hefner; cruise participants Jacob Forsyth, Joleen Heiderich, Chuxuan Li, Marco Valero, Lauren Ball, John McCord, and Kyle Maddux-Lawrence; and the crew of R/V Armstrong for their able support during three PEACH cruises.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-06-10
    Description: Author Posting. © American Meteorological Society, 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of the Atmospheric and Oceanic Technology 38(9), (2021): 1535–1550, https://doi.org/10.1175/JTECH-D-20-0176.s1.
    Description: Monitoring the heat content variability of glacial fjords is crucial to understanding the effects of oceanic forcing on marine-terminating glaciers. A pressure-sensor-equipped inverted echo sounder (PIES) was deployed midfjord in Sermilik Fjord in southeast Greenland from August 2011 to September 2012 alongside a moored array of instruments recording temperature, conductivity, and velocity. Historical hydrography is used to quantify the relationship between acoustic travel time and the vertically averaged heat content, and a new method is developed for filtering acoustic return echoes in an ice-influenced environment. We show that PIES measurements, combined with a knowledge of the fjord’s two-layer density structure, can be used to reconstruct the thickness and temperature of the inflowing water. Additionally, we find that fjord–shelf exchange events are identifiable in the travel time record implying the PIES can be used to monitor fjord circulation. Finally, we show that PIES data can be combined with moored temperature records to derive the heat content of the upper layer of the fjord where moored instruments are at great risk of being damaged by transiting icebergs.
    Description: FS and MA acknowledge funding from the Kerr Family Foundation and the Grossman Family Foundation through the Woods Hole Oceanographic Institution. MA is supported by a grant from the National Science Foundation Office of Polar Programs (1332911). FS and RS acknowledge support from NSF OCE-1657601 and from the Heising-Simons Foundation.
    Keywords: Glaciers ; Ice sheets ; Acoustic measurements/effects ; In situ oceanic observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-06-13
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Forsyth, J., Gawarkiewicz, G., & Andres, M. The impact of Warm Core Rings on Middle Atlantic Bight shelf temperature and shelf break velocity. Journal of Geophysical Research: Oceans, 127, (2022): e2021JC017759, https://doi.org/10.1029/2021jc017759.
    Description: Warm Core Rings (WCRs) are known to disrupt the shelf flow as well as drive strong heat transport onto the Middle Atlantic Bight shelf. We examine 27 rings sampled by the container ship Oleander, 16 rings which have in-situ velocity data and 11 rings identified from satellite sea surface height but with in-situ temperature data, to study the variability in rings' impact on shelf break velocities and on the temperature of the adjacent shelf. WCRs that have higher rotational velocities and are closer to the shelf are found to exert greater influence on the along-shelf velocities, with the fastest and closest rings reversing the direction of flow at the shelf break. As rings approach the study site, the Shelfbreak Jet is faster than when the rings are about to exit the study site, likely due to first steepening then flattening of the isopycnals at the Shelfbreak Front. Rings also have lasting impacts on the shelf temperature: rings with faster rotational velocities cool the shelf and rings with slower rotational velocities warm the shelf. The evolution of temperature on the shelf as a ring passes is strongly tied to the season. During warmer seasons, when temperature stratification on the shelf is strong, a ring cools the shelf; during periods of weak thermal stratification, rings tend to warm the shelf. Rings which cool the shelf are additionally associated with increased upwelling as they pass the study site.
    Description: J. Forsyth and M. Andres were supported by OCE-1924041. J. Forsyth and G. Gawarkiewicz were supported by ONR N00014-19-1-2646. G. Gawarkiewicz was also supported by NSF under grant OCE-1851261.
    Keywords: Warm Core Rings ; Middle Atlantic Bight ; CMV Oleander ; Shelfbreak processes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 101(11), (2020): E1891-E1913, https://doi.org/10.1175/BAMS-D-19-0209.1
    Description: The Indian Ocean Observing System (IndOOS), established in 2006, is a multinational network of sustained oceanic measurements that underpin understanding and forecasting of weather and climate for the Indian Ocean region and beyond. Almost one-third of humanity lives around the Indian Ocean, many in countries dependent on fisheries and rain-fed agriculture that are vulnerable to climate variability and extremes. The Indian Ocean alone has absorbed a quarter of the global oceanic heat uptake over the last two decades and the fate of this heat and its impact on future change is unknown. Climate models project accelerating sea level rise, more frequent extremes in monsoon rainfall, and decreasing oceanic productivity. In view of these new scientific challenges, a 3-yr international review of the IndOOS by more than 60 scientific experts now highlights the need for an enhanced observing network that can better meet societal challenges, and provide more reliable forecasts. Here we present core findings from this review, including the need for 1) chemical, biological, and ecosystem measurements alongside physical parameters; 2) expansion into the western tropics to improve understanding of the monsoon circulation; 3) better-resolved upper ocean processes to improve understanding of air–sea coupling and yield better subseasonal to seasonal predictions; and 4) expansion into key coastal regions and the deep ocean to better constrain the basinwide energy budget. These goals will require new agreements and partnerships with and among Indian Ocean rim countries, creating opportunities for them to enhance their monitoring and forecasting capacity as part of IndOOS-2.
    Description: We thank the World Climate Research Programme (WCRP) and its core project on Climate and Ocean: Variability, Predictability and Change (CLIVAR), the Indian Ocean Global Ocean Observing System (IOGOOS), the Intergovernmental Oceanographic Commission of UNESCO (IOC-UNESCO), the Integrated Marine Biosphere Research (IMBeR) project, the U.S. National Oceanic and Atmospheric Administration (NOAA), and the International Union of Geodesy and Geophysics (IUGG) for providing the financial support to bring international scientists together to conduct this review. We thank the members of the independent review board that provided detailed feedbacks on the review report that is summarized in this article: P. E. Dexter, M. Krug, J. McCreary, R. Matear, C. Moloney, and S. Wijffels. PMEL Contribution 5041. C. Ummenhofer acknowledges support from The Andrew W. Mellon Foundation Award for Innovative Research.
    Description: 2021-05-01
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...