GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • NATURE PUBLISHING GROUP  (2)
  • Nature Publishing Group
  • 2020-2023  (2)
Document type
Publisher
Years
Year
  • 1
    facet.materialart.
    Unknown
    NATURE PUBLISHING GROUP
    In:  EPIC3Nature Geoscience, NATURE PUBLISHING GROUP, 14, pp. 930-936, ISSN: 1752-0894
    Publication Date: 2022-01-10
    Description: Deglacial transitions of the middle to late Pleistocene (terminations) are linked to gradual changes in insolation accompanied by abrupt shifts in ocean circulation. However, the reason these deglacial abrupt events are so special compared with their sub-glacial-maximum analogues, in particular with respect to the exaggerated warming observed across Antarctica, remains unclear. Here we show that an increase in the relative importance of salt versus temperature stratification in the glacial deep South Atlantic decreases the potential cooling effect of waters that may be upwelled in response to abrupt perturbations in ocean circulation, as compared with sub-glacial-maximum conditions. Using a comprehensive coupled atmosphere–ocean gen-eral circulation model, we then demonstrate that an increase in deep-ocean salinity stratification stabilizes relatively warm waters in the glacial deep ocean, which amplifies the high southern latitude surface ocean temperature response to an abrupt weakening of the Atlantic meridional overturning circulation during deglaciation. The mechanism can produce a doubling in the net rate of warming across Antarctica on a multicentennial timescale when starting from full glacial conditions (as compared with interglacial or subglacial conditions) and therefore helps to explain the large magnitude and rapidity of glacial termina-tions during the late Quaternary.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    NATURE PUBLISHING GROUP
    In:  EPIC3Nature Geoscience, NATURE PUBLISHING GROUP, 14(11), pp. 819-826, ISSN: 1752-0894
    Publication Date: 2022-02-15
    Description: Changes in the magnitude of millennial-scale climate variability (MCV) during the Late Pleistocene occur as a function of changing background climate state over tens of thousands of years, an indirect consequence of slowly varying incoming solar radiation associated with changes in Earth’s orbit. However, whether astronomical forcing can stimulate MCV directly (without a change in the background state) remains to be determined. Here we use a comprehensive fully coupled climate model to demonstrate that orbitally driven insolation changes alone can give rise to spontaneous millennial-scale climate oscillations under intermediate glacial conditions. Our results demonstrate that an abrupt transition from warm interstadial to cold stadial conditions can be triggered directly by a precession-controlled increase in low-latitude boreal summer insolation and/or an obliquity-controlled decrease in high-latitude mean annual insolation, by modulating North Atlantic low-latitude hydroclimate and/or high-latitude sea ice–ocean–atmosphere interactions, respectively. Furthermore, contrasting insolation effects over the tropical versus subpolar North Atlantic, exerted by obliquity or precession, result in an oscillatory climate regime, even within an otherwise stable climate. With additional sensitivity experiments under different glacial–interglacial climate backgrounds, we synthesize a coherent theoretical framework for climate stability, elaborating the direct and indirect (dual) control by Earth’s orbital cycles on millennial-scale climate variability during the Pleistocene.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...