GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Elsevier  (4)
  • SPRINGER  (4)
  • 2020-2024  (3)
  • 2020-2023  (1)
  • 2015-2019  (3)
  • 2010-2014  (1)
  • 1
    Publication Date: 2017-08-01
    Description: Biotic interactions are particularly relevant in stable environments, such as the High Antarctic areas. Among them, predation has a key role in structuring community and population variables, including size-frequency distribution. This study aims to quantify the impact of predation by the notothenioid fish Trematomus bernacchii on the Antarctic scallop Adamussium colbecki- size distribution. We developed a model of this impact that estimates the size distribution of the preyed scallop population, taking into account for the predator- size distribution, sex structure, and daily consumption. Comparing this size distribution of the preyed A. colbecki with the living populations at Terra Nova Bay (Ross Sea, Antarctica), we were able to detect a relevant impact of fish predation. Fish-size frequency resulted to be the major factor shaping preysize structure, with significant differences between predation by males and females. Our findings, given the key role of the two species in the littoral ecosystem of Terra Nova Bay (Antarctic Special Protected Area 161), fall into the framework of ecosystem management of High Antarctic coastal areas, particularly in the actual context of climate change, and increasing anthropogenic impact
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-05-06
    Description: Environmental factors can affect the rate of ageing and shape the lifespan in marine ectotherms. The mechanisms and the degree of - environmental influence on aging can best be studied in species with wide ranging biogeographic distribution. One of the biomarkers of physiological ageing is the fluorescent age pigment lipofuscin, which accumulates over lifetime in tissues of bivalves. We compared lipofuscin accumulation rate in muscles and respiratory tissues of the extremely long lived bivalve Arctica islandica from five geographically distinct populations (Northern Norway, White Sea, Kiel Bay, German Bight and Iceland). Maximum investigated chronological age across different populations in the present study differed from 40 years in Kiel Bay to 192 years at Iceland. An inverse association between lipofuscin deposition rate and recorded maximum age was observed through inter-population comparisons. In most cases lipofuscin accumulated exponentially over age in a tissue specific manner. The age specific lipofuscin content was significantly higher in respiratory than muscles tissues in all populations. Cellular lipofuscin granule area can be used as indicator of aging across A. islandica populations with the variance in granule accumulation depending on the annual variations of salinity in different marine regions, but not on the habitat specific thermal envelope.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-11-02
    Description: In Arctic macroalgal belt ecosystems, macrozoobenthic production is thought to be an important link between primary production and higher trophic levels. Macrozoobenthic biomass and secondary production were studied along transects (2.5-15 m depth) in the macroalgal belt at Hansneset in Kongsfjorden, Svalbard, from 2012 to 2013. At 2.5m, the standing stock reached its maxima of 174.8 ± 54.4 g ash free dry weight per 1 m2, while density (4341 ind. m-2± 1127 95% CI) and production (7.0 g C m-2 y-1 ± 2.8 95% CI) were highest at 5 m water depth in 2012/13. Compared to a study from 1996/98, this re-sampling indicated a drastic change in the depth-distribution of macrozoobenthic biomass and secondary production at Hansneset. While both biomass and secondary production increased with water depth in 1996/98, this pattern was inversed in 2012/13 owing to a tenfold increase of biomass and secondary production in the upper most sublittoral (2.5-5 m). Variability of macrozoobenthic biomass and secondary production corresponded to differences in the physical environment and macroalgal vegetation along the depth gradient. In the last decade, the number of ice free days per year increased probably due to Arctic warming. As a result, shallow rocky habitats (2.5-5 m) are less affected by ice scouring, thereby opening new space for colonization by benthic fauna. However, faunal secondary production was low compared to macroalgal primary production, indicating a considerable export of most of the algal production from the shallow habitats to the adjacent areas.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-01-16
    Description: The ongoing process of ocean acidification already affects marine life, and according to the concept of oxygen and capacity limitation of thermal tolerance, these effects may be intensified at the borders of the thermal tolerance window. We studied the effects of elevated CO2 concentrations on clapping performance and energy metabolism of the commercially important scallop Pecten maximus. Individuals were exposed for at least 30 days to 4 °C (winter) or to 10 °C (spring/summer) at either ambient (0.04 kPa, normocapnia) or predicted future PCO2 levels (0.11 kPa, hypercapnia). Cold-exposed (4 °C) groups revealed thermal stress exacerbated by PCO2 indicated by a high mortality overall and its increase from 55 % under normocapnia to 90 % under hypercapnia. We therefore excluded the 4 °C groups from further experimentation. Scallops at 10 °C showed impaired clapping performance following hypercapnic exposure. Force production was significantly reduced although the number of claps was unchanged between normocapnia- and hypercapnia-exposed scallops. The difference between maximal and resting metabolic rate (aerobic scope) of the hypercapnic scallops was significantly reduced compared with normocapnic animals, indicating a reduction in net aerobic scope. Our data confirm that ocean acidification narrows the thermal tolerance range of scallops resulting in elevated vulnerability to temperature extremes and impairs the animal’s performance capacity with potentially detrimental consequences for its fitness and survival in the ocean of tomorrow.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-08-30
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-03-13
    Description: It is important to understand the historical precedents of current situations to be able to anticipate where the current global environmental and climatic change may lead. Geo-historical data provide information beyond the limitations of instrumental data. This study aims to reconstruct components of the palaeoclimatic and palaeoenvironmental history of the Beagle Channel (BC) during the Late Holocene by using Ameghinomya antiqua shells. We use fossil and modern shells in a comparative analysis through a multiproxy approach, i.e., shell morphometrics, shell growth, and stable oxygen isotope ratios. A holistic analysis of all the proxies indicates that higher productivity occurred around 3542 yr B.P. in the BC, evidenced by more significant growth, size, and longevity in fossil specimens. In addition, smaller ligaments, cardinal teeth, and the pallial sinus in fossil specimens indicate a low-energy environment typical of a marine archipelago. Lastly, palaeotemperatures are estimated to be warmer than today, although the intensity may be overestimated due to the freshwater inflow that would change the salinity of the BC waters. Further analysis in Late-Holocene shells is essential for a more detailed environmental reconstruction around the southern tip of South America.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-01-31
    Description: The authors regret that the specified units of bioirrigation activity (Ic) and the indices (i.e. IPc,AFDM, IPc,WM, BPc,WM, BPc,AFDM) were incorrect in the original publication. Bioirrigation activity was presented in l/m25 min rather than in l/m2h and the indices were calculated per experimental core rather than per m2. Nevertheless, this does not affect the results and also the conclusions remain unchanged. AICc values for the best models of IPc,AFDM, IPc,WM, BPc,WM, BPc,AFDM have not changed in relation to each other, although they differ in value. The corrected version of Appendix B includes the corrected statistical details (i.e. AICc values). The corrected version of the Fig. 1 is provided below. The authors would like to apologize for any inconvenience caused.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Elsevier
    In:  EPIC3Journal of Environmental Management, Elsevier, 347, pp. 119022-119022, ISSN: 0301-4797
    Publication Date: 2024-01-31
    Description: At the end of their operational life time offshore wind farms need to be decommissioned. How and to what extent the removal of the underwater structures impairs the ecosystem that developed during the operational phase of the wind farm is not known. So, decision makers face a knowledge gap, making the consideration of such ecological impacts challenging when planning decommissioning. This study evaluates how complete or partial decommissioning of foundation structure and scour protection layer impacts local epibenthic macrofauna biodiversity. We assessed three decommissioning alternatives (one for complete and two for partial removal) regarding their impact on epibenthic macrofauna species richness. The results imply that leaving the scour protection layer in situ will preserve a considerable number of species while cutting of the foundation structure above seabed will be beneficial for the fauna of such foundation structures where no scour protection is installed. These results should be taken with a grain of salt, as the current data base is rather limited. Data need to be improved substantially to allow for reliable statements and sound advice regarding the ecological impact of offshore wind farm decommissioning.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...