GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (6)
  • 2015-2019  (3)
  • 2023  (6)
  • 2019  (3)
Document type
Keywords
Years
  • 2020-2024  (6)
  • 2015-2019  (3)
Year
  • 1
    Publication Date: 2024-03-09
    Description: Biomass of zooplankton taxa in µg DM per liter as determined by ZooScan, using published area to dry weight relationships (Lehette & Hernandez-Leon 2009). Each data point is one sampling day (date) in one mesocosm (MK). For details on experimental treatments and sampling, refer to Bach et al. 2021 (https://doi.org/10.5194/bg-17-4831-2020) and Ayon et al. 2022 (https://doi.org/10.5194/bg-2022-157). Raw images are stored in https://ecotaxa.obs-vlfr.fr/prj/3784. All taxonomic categories are self-expanatory.
    Keywords: Abundance; Acartia spp., biomass, dry mass; Biomass; Bivalvia, biomass, dry mass; Branchiostoma spp., biomass, dry mass; Calanoida, biomass, dry mass; Ceratium spp., biomass, dry mass; Climate - Biogeochemistry Interactions in the Tropical Ocean; Cnidaria, biomass, dry mass; Coastal Upwelling System in a Changing Ocean; Copepoda, biomass, dry mass; Copepoda, nauplii, biomass, dry mass; Corycaeidae, biomass, dry mass; Crustacea, larvae, biomass, dry mass; CUSCO; Cyclopoida, biomass, dry mass; DATE/TIME; Diatoms, centrales, biomass, dry mass; Gastropoda, biomass, dry mass; Gut fluorescence; Harpacticoida, biomass, dry mass; Hemicyclops spp., biomass, dry mass; Humboldt Current System; KOSMOS_2017; KOSMOS_2017_Peru; KOSMOS Peru; Lipid; MESO; mesocosm experiment; Mesocosm experiment; Mesocosm label; Noctilucales, biomass, dry mass; Oncaeidae, biomass, dry mass; Oxygen Minimun zone; Paracalanus spp., biomass, dry mass; Polychaeta, biomass, dry mass; Sample code/label; Sample volume; SFB754; Spionidae, biomass, dry mass; Stable isotopes; Tintinnida, biomass, dry mass; Zooplankton; Zooplankton, biomass, dry mass
    Type: Dataset
    Format: text/tab-separated-values, 2430 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-03-09
    Description: Zooplankton species/groups abundance table per mesocosm and sampling day. Abundances are given as individual per m-3 and individuals per liter.
    Keywords: Abundance; Abundance per volume; Biomass; Class; Climate - Biogeochemistry Interactions in the Tropical Ocean; Coastal Upwelling System in a Changing Ocean; CUSCO; DATE/TIME; Day of experiment; Gut fluorescence; Humboldt Current System; KOSMOS_2017; KOSMOS_2017_Peru; KOSMOS Peru; Life stage; Lipid; MESO; mesocosm experiment; Mesocosm experiment; Mesocosm label; Order; Oxygen Minimun zone; SFB754; Species; Stable isotopes; Treatment; Zooplankton
    Type: Dataset
    Format: text/tab-separated-values, 15477 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-03-09
    Description: Fatty acid composition data for the two dominant copepods in the mesocosms (Paracalanus sp. and Hemicyclops sp.).
    Keywords: Abundance; Biomass; Climate - Biogeochemistry Interactions in the Tropical Ocean; Coastal Upwelling System in a Changing Ocean; CUSCO; DATE/TIME; Day of experiment; Fatty acid of total lipids; Fatty alcohol of total lipids; Gut fluorescence; Humboldt Current System; KOSMOS_2017; KOSMOS_2017_Peru; KOSMOS Peru; Lipid; Lipids, total, per dry mass; MESO; mesocosm experiment; Mesocosm experiment; Mesocosm label; Oxygen Minimun zone; Phase; Polyunsaturated fatty acids of total lipids; Saturated fatty acids of total lipids; SFB754; Species; Stable isotopes; Treatment; Zooplankton
    Type: Dataset
    Format: text/tab-separated-values, 1431 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-03-09
    Description: Gut fluorescence and C/N ratio of Paracalanus sp. determined during two occassions during the mesocosm experiment (Sampling Day 21/22 and 34/35).
    Keywords: Abundance; Biomass; Carbon/Nitrogen ratio; Climate - Biogeochemistry Interactions in the Tropical Ocean; Coastal Upwelling System in a Changing Ocean; CUSCO; Day of experiment; Gut fluorescence; Gut fluorescence, dry mass; Humboldt Current System; KOSMOS_2017; KOSMOS_2017_Peru; KOSMOS Peru; Lipid; MESO; mesocosm experiment; Mesocosm experiment; Mesocosm label; Oxygen Minimun zone; SFB754; Species; Stable isotopes; Time in minutes; Time point, descriptive; Treatment; Zooplankton
    Type: Dataset
    Format: text/tab-separated-values, 1088 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-07
    Description: The Humboldt Current Upwelling System (HCS) is the most productive eastern boundary upwelling system (EBUS) in terms of fishery yield on the planet. EBUSs are considered hotspots of climate change with predicted expansion of mesopelagic oxygen minimum zones (OMZs) and related changes in the frequency and intensity of upwelling of nutrient-rich, low-oxygen deep water. To increase our mechanistic understanding of how upwelling impacts plankton communities and trophic links, we investigated mesozooplankton community succession and gut fluorescence, fatty acid and elemental compositions (C, N, O, P), and stable isotope (δ13C, δ15N) ratios of dominant mesozooplankton and microzooplankton representatives in a mesocosm setup off Callao (Peru) after simulated upwelling with OMZ water from two different locations and different N:P signatures (moderate and extreme treatments). An oxycline between 5 and 15 m with hypoxic conditions (〈50 µmol L−1) below ∼10 m persisted in the mesocosms throughout the experiment. No treatment effects were determined for the measured parameters, but differences in nutrient concentrations established through OMZ water additions were only minor. Copepods and polychaete larvae dominated in terms of abundance and biomass. Development and reproduction of the dominant copepod genera Paracalanus sp., Hemicyclops sp., Acartia sp., and Oncaea sp. were hindered as evident from accumulation of adult copepodids but largely missing nauplii. Failed hatching of nauplii in the hypoxic bottom layer of the mesocosms and poor nutritional condition of copepods suggested from very low gut fluorescence and fatty acid compositions most likely explain the retarded copepod development. Correlation analysis revealed no particular trophic relations between dominant copepods and phytoplankton groups. Possibly, particulate organic matter with a relatively high C:N ratio was a major diet of copepods. C:N ratios of copepods and polychaetes ranged 4.8–5.8 and 4.2–4.3, respectively. δ15N was comparatively high (∼13 ‰–17 ‰), potentially because the injected OMZ source water was enriched in δ15N as a result of anoxic conditions. Elemental ratios of dinoflagellates deviated strongly from the Redfield ratio. We conclude that opportunistic feeding of copepods may have played an important role in the pelagic food web. Overall, projected changes in the frequency and intensity of upwelling hypoxic waters may make a huge difference for copepod reproduction and may be further enhanced by varying N:P ratios of upwelled OMZ water masses.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Elsevier
    In:  EPIC3Advances in Marine Biology Vol. 82, Advances in Marine Biology, Elsevier, 42 p., pp. 51-92, ISBN: 978-0-08-102914-5
    Publication Date: 2020-02-01
    Description: Hyperiid amphipods are predatory pelagic crustaceans that are particularly prevalent in high-latitude oceans. Many species are likely to have co-evolved with soft-bodied zooplankton groups such as salps and medusae, using them as substrate, for food, shelter or reproduction. Compared to other pelagic groups, such as fish, euphausiids and soft-bodied zooplankton, hyperiid amphipods are poorly studied especially in terms of their distribution and ecology. Hyperiids of the genus Themisto, comprising seven distinct species, are key players in temperate and cold-water pelagic ecosystems where they reach enormous levels of biomass. In these areas, they are important components of marine food webs, and they are major prey for many commercially important fish and squid stocks. In northern parts of the Southern Ocean, Themisto are so prevalent that they are considered to take on the role that Antarctic krill play further south. Nevertheless, although they are around the same size as krill, and may also occur in swarms, their feeding behaviour and mode of reproduction are completely different, hence their respective impacts on ecosystem structure differ. Themisto are major predators of meso- and macrozooplankton in several major oceanic regions covering shelves to open ocean from the polar regions to the subtropics. Based on a combination of published and unpublished occurrence data, we plot out the distributions of the seven species of Themisto. Further, we consider the different predators that rely on Themisto for a large fraction of their diet, demonstrating their major importance for higher trophic levels such as fish, seabirds and mammals. For instance, T. gaudichaudii in the Southern Ocean comprises a major part of the diets of around 80 different species of squid, fish, seabirds and marine mammals, while T. libellula in the Bering Sea and Greenland waters is a main prey item for commercially exploited fish species. We also consider the ongoing and predicted range expansions of Themisto species in light of environmental changes. In northern high latitudes, sub-Arctic Themisto species are replacing truly Arctic, ice-bound, species. In the Southern Ocean, a range expansion of T. gaudichaudii is expected as water masses warm, impacting higher trophic levels and biogeochemical cycles. We identify the many knowlegde gaps that must be filled in order to evaluate, monitor and predict the ecological shifts that will result from the changing patterns of distribution and abundance of this important pelagic group.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    INTER-RESEARCH
    In:  EPIC3Marine Ecology-Progress Series, INTER-RESEARCH, 625, pp. 41-52, ISSN: 0171-8630
    Publication Date: 2019-10-09
    Description: Environmental fluctuations can impose energetic constraints on organisms in terms of food shortage or compensation for metabolic stress. To better understand the biochemical strategies that support adaptive physiological processes in variable environments, we studied the lipid dynamics of the brown shrimp Crangon crangon and the pink shrimp Pandalus montagui by analysing their midgut glands during an annual cycle. Both species have an overlapping distribu- tion range in the southern North Sea, but differ in their habitat preferences, reproductive strate- gies, and life-history traits. C. crangon showed minor total lipid accumulation in their midgut glands, ranging between 14 and 17% of dry mass (DM), dominated by phospholipids. In contrast, P. montagui stored significantly larger amounts of total lipid (47−70% DM, mainly triacylglycer- ols) and showed a distinct seasonal cycle in lipid accumulation with a maximum in summer. Fatty acid trophic markers indicated a wide food spectrum for both species, with higher preferences of P. montagui for microalgae. In C. crangon, feeding preferences were less distinct due the low total lipid levels in the midgut gland. PCA based on fatty acid compositions of both species suggested that C. crangon has a broader dietary spectrum than P. montagui. C. crangon seems to have the capacity to use sufficient energy directly from ingested food to fuel all metabolic requirements, including multiple spawnings, without building up large lipid reserves in the midgut gland. P. montagui, in contrast, relies more on the energy storage function of the midgut gland to over- come food scarcity and to allocate lipids for reproduction.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-10-04
    Description: The region of the Filchner Outflow System (FOS) in the southeastern Weddell Sea is characterized by intensive and complex interactions of different water masses. Dense Ice Shelf Water (ISW) emerging from beneath the ice shelf cavities on the continental shelf, meets Modified Warm Deep Water (MWDW) originating from the Antarctic Circumpolar Current at the sill of the Filchner Trough. These hydrographic features convert the FOS into an oceanographic key region, which may also show enhanced biological productivity and corresponding aggregations of marine top predators. In this context, six adult Weddell seals (Leptonychotes weddellii) were instrumented with CTD-combined satellite relay data loggers in austral summer 2014. By means of these long-term data loggers we aimed at investigating the influence of environmental conditions on the seals’ foraging behaviour throughout seasons, focussing on the local oceanographic features. Weddell seals performed pelagic and demersal dives, mainly on the continental shelf, where they presumably exploited the abundant bentho-pelagic fish fauna. Diurnal and seasonal variations in light availability affected foraging activities. MWDW was associated with increased foraging effort. However, we observed differences in movements and habitat use between two different groups of Weddell seals. Seals tagged in the pack ice of the FOS focussed their foraging activities to the western and, partly, eastern flank of the Filchner Trough, which coincides with inflow pathways of MWDW. In contrast, Weddell seals tagged on the coastal fast ice exhibited typical central-place foraging and utilized resources close to their colony. High foraging effort in MWDW and high utilization of areas associated with an inflow of MWDW raise questions on the underlying biological features. This emphasizes the importance of further interdisciplinary ecological investigations in the near future, as the FOS may soon be impacted by predicted climatic changes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-10-23
    Description: Species identification is pivotal in biodiversity assessments and proteomic fingerprinting by MALDI-TOF mass spectrometry has already been shown to reliably identify calanoid copepods to species level. However, MALDI-TOF data may contain more information beyond mere species identification. In this study, we investigated different ontogenetic stages (copepodids C1–C6 females) of three co-occurring Calanus species from the Arctic Fram Strait, which cannot be identified to species level based on morphological characters alone. Differentiation of the three species based on mass spectrometry data was without any error. In addition, a clear stage-specific signal was detected in all species, supported by clustering approaches as well as machine learning using Random Forest. More complex mass spectra in later ontogenetic stages as well as relative intensities of certain mass peaks were found as the main drivers of stage distinction in these species. Through a dilution series, we were able to show that this did not result from the higher amount of biomass that was used in tissue processing of the larger stages. Finally, the data were tested in a simulation for application in a real biodiversity assessment by using Random Forest for stage classification of specimens absent from the training data. This resulted in a successful stage-identification rate of almost 90%, making proteomic fingerprinting a promising tool to investigate polewards shifts of Atlantic Calanus species and, in general, to assess stage compositions in biodiversity assessments of Calanoida, which can be notoriously difficult using conventional identification methods.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...