GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • PANGAEA  (26)
  • 2020-2024  (13)
  • 2015-2019  (13)
  • 1995-1999
  • 2022  (13)
  • 2018  (13)
Document type
Keywords
Years
  • 2020-2024  (13)
  • 2015-2019  (13)
  • 1995-1999
Year
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  University of Bremen, Marine Zoology | Supplement to: Bode, Maya; Koppelmann, Rolf; Teuber, Lena; Hagen, Wilhelm; Auel, Holger (2018): Carbon Budgets of Mesozooplankton Copepod Communities in the Eastern Atlantic Ocean-Regional and Vertical Patterns Between 24°N and 21°S. Global Biogeochemical Cycles, 32(5), 840-857, https://doi.org/10.1029/2017GB005807
    Publication Date: 2023-08-05
    Description: The copepods' impact on vertical carbon flux was assessed for stratified depth layers down to 2000 m at six stations along a transect between 24°N and 21°S in the eastern Atlantic Ocean in October/November 2012. Total copepod community consumption ranged from 202-604 mg C m⁻² day⁻¹, with highest ingestion rates in the tropical North Atlantic. Calanoids consumed 75-90% of the particulate organic carbon (POC) ingested by copepods, although the relative contribution of cyclopoids (mostly Oncaeidae) increased with depth. Net ingestion (=consumption - fecal pellet egestion) of POC varied from 106-379 mg C m⁻² day⁻¹ for calanoids and 37-51 mg C m⁻² day⁻¹ for cyclopoids, corresponding to 16-58% and 5-9%, respectively, of primary production (PP). In total, 9-33% and 2-5% of PP were respired as inorganic carbon by calanoids and cyclopoids, respectively. Copepod ingestion was highly variable between stations and depth layers, especially in the epi- and upper mesopelagic zone. Diel vertical migrants such as Pleuromamma enhanced the vertical flux to deeper layers, particularly in the region influenced by the Benguela Current. The impact of copepod communities on POC flux decreased below 1000 m and POC resources reaching the bathypelagic zone were far from being fully exploited by copepods. As key components, copepods are important mediators of carbon fluxes in the ocean. Their biomass, community composition and interactions strongly affect the magnitude of organic carbon recycled or exported to deeper layers. High variability, even at smaller vertical scales, emphasizes the complex dynamics of the biological carbon pump.
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-11-24
    Keywords: ARGOS satellite-relayed data logger series 9000 CTD; DATE/TIME; DEPTH, water; FIL2014; FIL2014_wed_a_m_03; LONGITUDE; Marine endotherm; Marine Mammals Exploring the Oceans Pole to Pole; MEOP; MET; Polarstern; PS82; Quality flag; Salinity; Southern Ocean - Atlantic Sector; Station label; Temperature, water; Type; wd06-03-13
    Type: Dataset
    Format: text/tab-separated-values, 13545 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-11-24
    Keywords: ARGOS satellite-relayed data logger series 9000 CTD; DATE/TIME; DEPTH, water; FIL2014; FIL2014_wed_a_f_06; LONGITUDE; Marine endotherm; Marine Mammals Exploring the Oceans Pole to Pole; MEOP; MET; Polarstern; PS82; Quality flag; Salinity; Southern Ocean - Atlantic Sector; Station label; Temperature, water; Type; wd06-07-13
    Type: Dataset
    Format: text/tab-separated-values, 38273 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-11-24
    Keywords: ARGOS satellite-relayed data logger series 9000 CTD; DATE/TIME; DEPTH, water; FIL2014; FIL2014_wed_a_f_05; LONGITUDE; Marine endotherm; Marine Mammals Exploring the Oceans Pole to Pole; MEOP; MET; Polarstern; PS82; Quality flag; Salinity; Southern Ocean - Atlantic Sector; Station label; Temperature, water; Type; wd06-05-13
    Type: Dataset
    Format: text/tab-separated-values, 10920 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-11-24
    Keywords: ARGOS satellite-relayed data logger series 9000 CTD; DATE/TIME; DEPTH, water; FIL2014; FIL2014_wed_a_f_07; LONGITUDE; Marine endotherm; Marine Mammals Exploring the Oceans Pole to Pole; MEOP; MET; Polarstern; PS82; Quality flag; Salinity; Southern Ocean - Atlantic Sector; Station label; Temperature, water; Type; wd06-08-13
    Type: Dataset
    Format: text/tab-separated-values, 34963 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-11-24
    Keywords: ARGOS satellite-relayed data logger series 9000 CTD; DATE/TIME; DEPTH, water; FIL2014; FIL2014_wed_a_f_01; LONGITUDE; Marine endotherm; Marine Mammals Exploring the Oceans Pole to Pole; MEOP; MET; Polarstern; PS82; Quality flag; Salinity; Southern Ocean - Atlantic Sector; Station label; Temperature, water; Type; wd06-01-13
    Type: Dataset
    Format: text/tab-separated-values, 21059 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-11-24
    Keywords: ARGOS satellite-relayed data logger series 9000 CTD; DATE/TIME; DEPTH, water; FIL2014; FIL2014_wed_a_f_04; LONGITUDE; Marine endotherm; Marine Mammals Exploring the Oceans Pole to Pole; MEOP; MET; Polarstern; PS82; Quality flag; Salinity; Southern Ocean - Atlantic Sector; Station label; Temperature, water; Type; wd06-04-13
    Type: Dataset
    Format: text/tab-separated-values, 51127 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-03-09
    Description: A combined stable isotope and fatty acid trophic biomarker approach was adopted for key zooplankton taxa and higher trophic positions of the northern Humboldt Current System to elucidate the pelagic food-web structure and to better understand trophic interactions. Samples covered an extensive spatial range from 8.5°S to 16°S and a vertical range down to 1,000 m depth. Immediately after each haul, specimens were sorted alive in the lab and apparently live and healthy individuals were stored in vials and deep-frozen at -80°C until further lipid and stable isotope analyses. The comprehensive data set covered over 20 zooplankton taxa and indicated that three biomass-rich crustacean species usually dominated the zooplankton community, i.e., the copepods Calanus chilensis at the surface and Eucalanus inermis in the pronounced oxygen minimum zone and the krill Euphausia mucronata, resulting in an overall low number of major trophic pathways toward anchovies. In addition, the semi-pelagic squat lobster Pleuroncodes monodon appears to play a key role in the benthic-pelagic coupling. By partly feeding on benthic resources and by diel vertical migration, P. monodon provides a unique pathway for returning carbon and energy from the sea floor to the epipelagic layer, increasing the food supply for pelagic fish.
    Keywords: Coastal Upwelling System in a Changing Ocean; CUSCO
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-05-17
    Keywords: Prosome, length; Prosome length, standard deviation; Species; TRAFFIC; Trophic Transfer Efficiency in the Benguela Current
    Type: Dataset
    Format: text/tab-separated-values, 561 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-05-17
    Keywords: Acartia, c1-c3, ingestion rate of carbon; Acartia, c4-c5, ingestion rate of carbon; Acartia, female, ingestion rate of carbon; Acartia, male, ingestion rate of carbon; Aetideidae, c1-c3, ingestion rate of carbon; Aetideidae, c4-c5, ingestion rate of carbon; Aetideopsis, c4-c5, ingestion rate of carbon; Aetideus, c4-c5, ingestion rate of carbon; Aetideus, male, ingestion rate of carbon; Aetideus armatus, female, ingestion rate of carbon; Aetideus giesbrechti, female, ingestion rate of carbon; Amallothrix, female, ingestion rate of carbon; Augaptilidae, c1-c3, ingestion rate of carbon; Calanidae, c1-c3, ingestion rate of carbon; Calanoida, biomass as dry weight; Calanoida, ingestion rate of carbon; Calanoida, total; Calanoides natalis, c4-c5, ingestion rate of carbon; Calanoides natalis, female, ingestion rate of carbon; Calanoides natalis, male, ingestion rate of carbon; Calanus agulhensis, c4-c5, ingestion rate of carbon; Calanus agulhensis, female, ingestion rate of carbon; Calanus agulhensis, male, ingestion rate of carbon; Calculated; Candacia, c1-c3, ingestion rate of carbon; Candacia, c4c5, ingestion rate of carbon; Candacia bipinnata, female , ingestion rate of carbon; Candacia curta, female, ingestion rate of carbon; Candacia curta, male, ingestion rate of carbon; Candacia sp., female, ingestion rate of carbon; Centropages brachiatus, c1-c3, ingestion rate of carbon; Centropages brachiatus, c4-c5, ingestion rate of carbon; Centropages brachiatus, female, ingestion rate of carbon; Centropages brachiatus, male, ingestion rate of carbon; Centropages bradyi, c1-c3, ingestion rate of carbon; Centropages bradyi, c4-c5, ingestion rate of carbon; Chiridius gracilis, c4-c5, ingestion rate of carbon; Chiridius gracilis, female, ingestion rate of carbon; Clausocalanidae, ingestion rate of carbon; Comment; Cyclopoida, biomass as dry weight; Cyclopoida, ingestion rate of carbon; Cyclopoida, total; Date/Time of event; Depth, bottom/max; Depth, top/min; DEPTH, water; Elevation of event; Euaugaptilus palumboi, c4-c5, ingestion rate of carbon; Euaugaptilus palumboi, female, ingestion rate of carbon; Eucalanus hyalinus, female, ingestion rate of carbon; Eucalanus hyalinus, male, ingestion rate of carbon; Euchaeta, c1-c3, ingestion rate of carbon; Euchaeta, c4-c5, ingestion rate of carbon; Euchaeta acuta, female, ingestion rate of carbon; Euchaeta acuta, male, ingestion rate of carbon; Euchaeta marina, female, ingestion rate of carbon; Euchaeta media, female, ingestion rate of carbon; Euchaeta sp., male, ingestion rate of carbon; Euchirella rostrata, c4-c5, ingestion rate of carbon; Euchirella sp., c1-c3, ingestion rate of carbon; Euchirella sp., c4-c5, ingestion rate of carbon; Event label; Gaetanus brevispinus, male, ingestion rate of carbon; Gaetanus cf. minor, c1-c3, ingestion rate of carbon; Gaetanus cf. minor, c4-c5, ingestion rate of carbon; Gaetanus sp., c4-c5, ingestion rate of carbon; Gaetanus spp., c1-c3, ingestion rate of carbon; Haloptilus longicornis, c1-c3, ingestion rate of carbon; Haloptilus longicornis, c4-c5, ingestion rate of carbon; Haloptilus longicornis, female, ingestion rate of carbon; Haloptilus oxycephalus, female, ingestion rate of carbon; Heterorhabdus spp., c1-c3, ingestion rate of carbon; Heterorhabdus spp., c4-c5, ingestion rate of carbon; Heterorhabdus spp., female, ingestion rate of carbon; Heterorhabdus spp., male, ingestion rate of carbon; Labidocera acuta, female, ingestion rate of carbon; Latitude of event; Longitude of event; Lophothrix frontalis, c4-c5, ingestion rate of carbon; Lophothrix latipes, female, ingestion rate of carbon; Lucicutia, maleagna, female, ingestion rate of carbon; Lucicutia clausii, c4-c5, ingestion rate of carbon; Lucicutia clausii, female, ingestion rate of carbon; Lucicutia clausii, male, ingestion rate of carbon; Lucicutia gaussae, female, ingestion rate of carbon; Lucicutia ovalis, male, ingestion rate of carbon; Lucicutia spp., c1-c3, ingestion rate of carbon; Lucicutia spp., c4-c5, ingestion rate of carbon; Lucicutia spp., female, ingestion rate of carbon; Lucicutia spp., male, ingestion rate of carbon; M153; M153_11-4; M153_12-4; M153_18-15; M153_6-4; M153_7-5; M153_8-4; M153_9-3; Mesocalanus tenuicornis, c1-c3, ingestion rate of carbon; Mesocalanus tenuicornis, c4-c5, ingestion rate of carbon; Mesocalanus tenuicornis, female, ingestion rate of carbon; Mesocalanus tenuicornis, male, ingestion rate of carbon; Meteor (1986); Metridia brevicauda, c4-c5, ingestion rate of carbon; Metridia brevicauda, female, ingestion rate of carbon; Metridia brevicauda, male, ingestion rate of carbon; Metridia effusa, c4-c5, ingestion rate of carbon; Metridia effusa, female, ingestion rate of carbon; Metridia effusa, male, ingestion rate of carbon; Metridia lucens, c4-c5, ingestion rate of carbon; Metridia lucens, female, ingestion rate of carbon; Metridia lucens, male, ingestion rate of carbon; Metridia venusta, c4-c5, ingestion rate of carbon; Metridia venusta, female, ingestion rate of carbon; Metridia venusta, male, ingestion rate of carbon; Metridinidae, c1-c3, ingestion rate of carbon; Monacilla sp., male, ingestion rate of carbon; MSN; Multiple opening/closing net; Nannocalanus, minor, c4-c5, ingestion rate of carbon; Nannocalanus, minor, female, ingestion rate of carbon; Nannocalanus, minor, male, ingestion rate of carbon; Neocalanus gracilis, c1-c3, ingestion rate of carbon; Neocalanus gracilis, c4-c5, ingestion rate of carbon; Neocalanus gracilis, female, ingestion rate of carbon; Neocalanus gracilis, male, ingestion rate of carbon; Nullosetigera helgae, female, ingestion rate of carbon; Nullosetigera impar, female, ingestion rate of carbon; Nullosetigera spp., c4-c5, ingestion rate of carbon; Oithona, ingestion rate of carbon; Oncaeidae, ingestion rate of carbon; Pareucalanus sp., c1-c3, ingestion rate of carbon; Pareucalanus sp., c4-c5, ingestion rate of carbon; Pleuromamma abdominalis, c1-c3, ingestion rate of carbon; Pleuromamma abdominalis, c4-c5, ingestion rate of carbon; Pleuromamma abdominalis, female, ingestion rate of carbon; Pleuromamma abdominalis, male, ingestion rate of carbon; Pleuromamma quadrungulata, c1-c3, ingestion rate of carbon; Pleuromamma quadrungulata, c4-c5, ingestion rate of carbon; Pleuromamma quadrungulata, female, ingestion rate of carbon; Pleuromamma quadrungulata, male, ingestion rate of carbon; Pleuromamma robusta, c4-c5, ingestion rate of carbon; Pleuromamma robusta, male, ingestion rate of carbon; Pleuromamma spp. small, c4-c5, ingestion rate of carbon; Pleuromamma spp. small, female, ingestion rate of carbon; Pleuromamma spp. small, male, ingestion rate of carbon; Pleuromamma xiphias, c4-c5, ingestion rate of carbon; Pleuromamma xiphias, female, ingestion rate of carbon; Pleuromamma xiphias, male, ingestion rate of carbon; Pseudoamallothrix sp., c4-c5, ingestion rate of carbon; Pseudoamallothrix sp., female, ingestion rate of carbon; Pseudochirella sp., c4-c5, ingestion rate of carbon; Rhincalanus cornutus, c4-c5, ingestion rate of carbon; Rhincalanus cornutus, female, ingestion rate of carbon; Rhincalanus nasutus, c1-c3, ingestion rate of carbon; Rhincalanus nasutus, c4-c5, ingestion rate of carbon; Rhincalanus nasutus, female, ingestion rate of carbon; Rhincalanus nasutus, male, ingestion rate of carbon; Scaphocalanus curtus, female, ingestion rate of carbon; Scaphocalanus spp., c1-c3, ingestion rate of carbon; Scaphocalanus spp., c4-c5, ingestion rate of carbon; Scaphocalanus spp., female, ingestion rate of carbon; Scaphocalanus spp., male, ingestion rate of carbon; Scolecithricella spp., c1-c3, ingestion rate of carbon; Scolecithricella spp., c4-c5, ingestion rate of carbon; Scolecithricella spp., female, ingestion rate of carbon; Scolecithricella spp., male, ingestion rate of carbon; Scolecithrix bradyi, c4-c5, ingestion rate of carbon; Scolecithrix bradyi, female, ingestion rate of carbon; Scolecithrix bradyi, male, ingestion rate of carbon; Scolecithrix
    Type: Dataset
    Format: text/tab-separated-values, 4725 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...