GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (37)
  • 2016  (37)
Document type
Keywords
Years
  • 2015-2019  (37)
Year
  • 1
    Publication Date: 2019-02-01
    Description: Global warming and ocean acidification are among the most important stressors for aquatic ecosystems in the future. To investigate their direct and indirect effects on a near-natural plankton community, a multiple-stressor approach is needed. Hence, we set up mesocosms in a full-factorial design to study the effects of both warming and high CO2 on a Baltic Sea autumn plankton community, concentrating on the impacts on microzooplankton (MZP). MZP abundance, biomass, and species composition were analysed over the course of the experiment. We observed that warming led to a reduced time-lag between the phytoplankton bloom and an MZP biomass maximum. MZP showed a significantly higher growth rate and an earlier biomass peak in the warm treatments while the biomass maximum was not affected. Increased pCO2 did not result in any significant effects on MZP biomass, growth rate, or species composition irrespective of the temperature, nor did we observe any significant interactions between CO2 and temperature. We attribute this to the high tolerance of this estuarine plankton community to fluctuations in pCO2, often resulting in CO2 concentrations higher than the predicted end-of-century concentration for open oceans. In contrast, warming can be expected to directly affect MZP and strengthen its coupling with phytoplankton by enhancing its grazing pressure.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-06
    Description: Ocean acidification has direct physiological effects on organisms, for example by dissolving the calcium carbonate structures of calcifying species. However, non-calcifiers may also be affected by changes in seawater chemistry. To disentangle the direct and indirect effects of ocean acidification on zooplankton growth, we undertook a study with two model organisms. Specifically, we investigated the individual effects of short-term exposure to high and low seawater pCO2, and different phytoplankton qualities as a result of different CO2 incubations on the growth of a heterotrophic dinoflagellate (Oxyrrhis marina) and a copepod species (Acartia tonsa). It was observed previously that higher CO2 concentrations can decrease phytoplankton food quality in terms of carbon : nutrient ratios. We therefore expected both seawater pCO2 (pH) and phytoplankton quality to result in decreased zooplankton growth. Although we expected lowest growth rates for all zooplankton under high seawater pCO2 and low algal quality, we found that direct pH effects on consumers seem to be of lesser importance than the associated decrease in algal quality. The decrease in the quality of primary producers under high pCO2 conditions negatively affected zooplankton growth, which may lead to lower availability of food for the next trophic level and thus potentially affect the recruitment of higher trophic levels.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-02-01
    Description: Global change is affecting marine ecosystems through a combination of different stressors such as warming, ocean acidification and oxygen depletion. Very little is known about the interactions among these factors, especially with respect to gelatinous zooplankton. Therefore, in this study we investigated the direct effects of pH, temperature and oxygen availability on the moon jellyfish Aurelia aurita, concentrating on the ephyral life stage. Starved one-day-old ephyrae were exposed to a range of pCO2 (400–4000 ppm) and three different dissolved oxygen levels (from saturated to hypoxic conditions), in two different temperatures (5 and 15 °C) for 7 days. Carbon content and swimming activity were analysed at the end of the incubation period, and mortality noted. General linearized models were fitted through the data, with the best fitting models including two- and three-way interactions between pCO2, temperature and oxygen concentration. The combined effect of the stressors was small but significant, with the clearest negative effect on growth caused by the combination of all three stressors present (high temperature, high CO2, low oxygen). We conclude that A. aurita ephyrae are robust and that they are not likely to suffer from these environmental stressors in a near future.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-09-23
    Description: Ocean acidification is considered as a crucial stressor for marine communities. In this study, we tested the effects of the IPCC RPC6.0 end-of-century acidification scenario on a natural plankton community in the Gullmar Fjord, Sweden, during a long-term mesocosm experiment from a spring bloom to a mid-summer situation. The focus of this study was on microzooplankton and its interactions with phytoplankton and mesozooplankton. The microzooplankton community was dominated by ciliates, especially small Strombidium sp., with the exception of the last days when heterotrophic dinoflagellates increased in abundance. We did not observe any effects of high CO2 on the community composition and diversity of microzooplankton. While ciliate abundance, biomass and growth rate were not affected by elevated CO2, we observed a positive effect of elevated CO2 on dinoflagellate abundances. Additionally, growth rates of dinoflagellates were significantly higher in the high CO2 treatments. Given the higher Chlorophyll a content measured under high CO2, our results point at mainly indirect effects of CO2 on microzooplankton caused by changes in phytoplankton standing stocks, in this case most likely an increase in small-sized phytoplankton of 〈8 μm. Overall, the results from the present study covering the most important part of the growing season indicate that coastal microzooplankton communities are rather robust towards realistic acidification scenarios.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-02-24
    Keywords: BIOACID; Biological Impacts of Ocean Acidification; Cell, diameter; Cell biovolume; Cell size; Taxon/taxa
    Type: Dataset
    Format: text/tab-separated-values, 620 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute - Biological Institute Helgoland | Supplement to: Algueró-Muñiz, Maria; Meunier, Cédric Léo; Holst, Sabine; Alvarez-Fernandez, Santiago; Boersma, Maarten (2016): Withstanding multiple stressors: ephyrae of the moon jellyfish (Aurelia aurita, Scyphozoa) in a high-temperature, high-CO2 and low-oxygen environment. Marine Biology, 163(9), https://doi.org/10.1007/s00227-016-2958-z
    Publication Date: 2023-02-24
    Description: Global change is affecting marine ecosystems through a combination of different stressors such as warming, ocean acidification and oxygen depletion. Very little is known about the interactions among these factors, especially with respect to gelatinous zooplankton. Therefore, in this study we investigated the direct effects of pH, temperature and oxygen availability on the moon jellyfish Aurelia aurita, concentrating on the ephyral life stage. Starved one-day-old ephyrae were exposed to a range of pCO2 (400-4000 ppm) and three different dissolved oxygen levels (from saturated to hypoxic conditions), in two different temperatures (5 and 15 °C) for 7 days. Carbon content and swimming activity were analysed at the end of the incubation period, and mortality noted. General linearized models were fitted through the data, with the best fitting models including two- and three-way interactions between pCO2, temperature and oxygen concentration. The combined effect of the stressors was small but significant, with the clearest negative effect on growth caused by the combination of all three stressors present (high temperature, high CO2, low oxygen). We conclude that A. aurita ephyrae are robust and that they are not likely to suffer from these environmental stressors in a near future.
    Keywords: BIOACID; Biological Impacts of Ocean Acidification
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Horn, Henriette G; Boersma, Maarten; Garzke, Jessica; Löder, Martin G J; Sommer, Ulrich; Aberle, Nicole (2016): Effects of high CO2 and warming on a Baltic Sea microzooplankton community. ICES Journal of Marine Science, 73, 772-782, https://doi.org/10.1093/icesjms/fsv198
    Publication Date: 2023-02-24
    Description: Global warming and ocean acidification are among the most important stressors for aquatic ecosystems in the future. To investigate their direct and indirect effects on a near-natural plankton community, a multiple-stressor approach is needed. Hence, we set up mesocosms in a full-factorial design to study the effects of both warming and high CO2 on a Baltic Sea autumn plankton community, concentrating on the impacts on microzooplankton (MZP). MZP abundance, biomass, and species composition were analysed over the course of the experiment. We observed that warming led to a reduced time-lag between the phytoplankton bloom and an MZP biomass maximum. MZP showed a significantly higher growth rate and an earlier biomass peak in the warm treatments while the biomass maximum was not affected. Increased pCO2 did not result in any significant effects on MZP biomass, growth rate, or species composition irrespective of the temperature, nor did we observe any significant interactions between CO2 and temperature. We attribute this to the high tolerance of this estuarine plankton community to fluctuations in pCO2, often resulting in CO2 concentrations higher than the predicted end-of-century concentration for open oceans. In contrast, warming can be expected to directly affect MZP and strengthen its coupling with phytoplankton by enhancing its grazing pressure.
    Keywords: BIOACID; Biological Impacts of Ocean Acidification
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Horn, Henriette G; Sander, Nils; Stuhr, Annegret; Algueró-Muñiz, Maria; Bach, Lennart Thomas; Löder, Martin G J; Boersma, Maarten; Riebesell, Ulf; Aberle, Nicole (2016): Low CO2 Sensitivity of Microzooplankton Communities in the Gullmar Fjord, Skagerrak: Evidence from a Long-Term Mesocosm Study. PLoS ONE, 11(11), e0165800, https://doi.org/10.1371/journal.pone.0165800
    Publication Date: 2024-03-06
    Description: Ocean acidification is considered as a crucial stressor for marine communities. In this study, we tested the effects of the IPCC RPC6.0 end-of-century acidification scenario on a natural plankton community in the Gullmar Fjord, Sweden, during a long-term mesocosm experiment from a spring bloom to a mid-summer situation. The focus of this study was on microzooplankton and its interactions with phytoplankton and mesozooplankton. The microzooplankton community was dominated by ciliates, especially small Strombidium sp., with the exception of the last days when heterotrophic dinoflagellates increased in abundance. We did not observe any effects of high CO2 on the community composition and diversity of microzooplankton. While ciliate abundance, biomass and growth rate were not affected by elevated CO2, we observed a positive effect of elevated CO2 on dinoflagellate abundances. Additionally, growth rates of dinoflagellates were significantly higher in the high CO2 treatments. Given the higher Chlorophyll a content measured under high CO2, our results point at mainly indirect effects of CO2 on microzooplankton caused by changes in phytoplankton standing stocks, in this case most likely an increase in small-sized phytoplankton of 〈8 µm. Overall, the results from the present study covering the most important part of the growing season indicate that coastal microzooplankton communities are rather robust towards realistic acidification scenarios.
    Keywords: BIOACID; Biological Impacts of Ocean Acidification
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-03-06
    Keywords: BIOACID; Biological Impacts of Ocean Acidification; Cell, diameter; Cell, length; Cell biovolume; Gullmar Fjord, Skagerrak, Sweden; KOSMOS_2013_Fjord; KOSMOS 2013; Kristineberg, Sweden; MESO; Mesocosm experiment; Taxon/taxa
    Type: Dataset
    Format: text/tab-separated-values, 1816 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-03-06
    Keywords: BIOACID; Biological Impacts of Ocean Acidification; Ciliates, other; DATE/TIME; Day of experiment; Dinoflagellates, athecate; Dinoflagellates, thecate; Dinophysis sp.; Euplotes sp.; Event label; Gullmar Fjord, Skagerrak, Sweden; Gyrodinium sp.; Identification; KOSMOS_2013_Mesocosm-M1; KOSMOS_2013_Mesocosm-M10; KOSMOS_2013_Mesocosm-M2; KOSMOS_2013_Mesocosm-M3; KOSMOS_2013_Mesocosm-M4; KOSMOS_2013_Mesocosm-M5; KOSMOS_2013_Mesocosm-M6; KOSMOS_2013_Mesocosm-M7; KOSMOS_2013_Mesocosm-M8; KOSMOS_2013_Mesocosm-M9; KOSMOS 2013; Laboea strobila; Lohmanniella oviformis; MESO; Mesocosm experiment; Myrionecta rubra; Protoperidinium sp.; Strobilidium sp.; Strombidium sp.; Suctoria; Tontonia gracillima; Treatment
    Type: Dataset
    Format: text/tab-separated-values, 3328 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...