GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (17)
  • 2020-2023  (4)
  • 2015-2019  (17)
  • 2000-2004
  • 2022  (21)
  • 2022  (21)
  • 2015  (17)
Keywords
Language
Years
  • 2020-2024  (17)
  • 2020-2023  (4)
  • 2015-2019  (17)
  • 2000-2004
Year
  • 1
  • 2
    Publication Date: 2024-03-12
    Description: Zooplankton plays a notable role in ocean biogeochemical cycles. However, it is often simulated as one generic group and top closure term in ocean biogeochemical models. This study presents the description of three zooplankton functional types (zPFTs, micro‐, meso‐ and macrozooplankton) in the ocean biogeochemical model FESOM‐REcoM. In the presented model, microzooplankton is a fast‐growing herbivore group, mesozooplankton is another major consumer of phytoplankton, and macrozooplankton is a slow‐growing group with a low temperature optimum. Meso‐ and macrozooplankton produce fast‐sinking fecal pellets. With three zPFTs, the annual mean zooplankton biomass increases threefold to 210 Tg C. The new food web structure leads to a 25% increase in net primary production and a 10% decrease in export production globally. Consequently, the export ratio decreases from 17% to 12% in the model. The description of three zPFTs reduces model mismatches with observed dissolved inorganic nitrogen and chlorophyll concentrations in the South Pacific and the Arctic Ocean, respectively. Representation of three zPFTs also strongly affects phytoplankton phenology: Fast nutrient recycling by zooplankton sustains higher chlorophyll concentrations in summer and autumn. Additional zooplankton grazing delays the start of the phytoplankton bloom by 3 weeks and controls the magnitude of the bloom peak in the Southern Ocean. As a result, the system switches from a light‐controlled Sverdrup system to a dilution‐controlled Behrenfeld system. Overall, the results suggest that representation of multiple zPFTs is important to capture underlying processes that may shape the response of ecosystems and ecosystem services to on‐going and future environmental change in model projections.
    Description: Plain Language Summary: Zooplankton plays an important role in the ocean food web and biogeochemical cycles. However, it is often represented in very simple forms in mathematical models that are, for example, used to investigate how marine primary productivity will react to climate change. To understand how these models would change when more complicated formulations for zooplankton are used, we present here a new version of the model with three (instead of only one) zooplankton groups. We find that this more complicated representation leads to higher zooplankton biomass, which is closer to observations, and this stimulates growth of phytoplankton since zooplankton also returns nutrients into the system. In addition, zooplankton grazing controls the seasonal cycle of phytoplankton, as we show for one example in the Southern Ocean.
    Description: Key Points: Nutrient recycling by zooplankton stimulates net primary production in the biogeochemical model REcoM‐2. Modeling zooplankton functional types (zPFTs) leads to a switch from a light‐controlled Sverdrup system to a dilution‐controlled Behrenfeld system. Implementing multiple zPFTs improves the modeled zooplankton biomass and zooplankton‐mediated biogeochemical fluxes.
    Description: Helmholtz Young Investigator Group Marine Carbon and Ecosystem Feedbacks in the Earth System [MarESys]
    Description: https://doi.org/10.1594/PANGAEA.779970
    Description: https://doi.org/10.1594/PANGAEA.785501
    Description: https://doi.org/10.1594/PANGAEA.777398
    Description: https://www.nodc.noaa.gov/OC5/woa18/woa18data.html
    Description: http://sites.science.oregonstate.edu/ocean.productivity/index.php
    Description: https://doi.pangaea.de/10.1594/PANGAEA.942192
    Keywords: ddc:577.7 ; Southern Ocean ; zooplankton ; ocean food web ; biogeochemical cycles ; modeling
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-04-21
    Keywords: DrescherInlet; Marine Mammal Tracking; MMT
    Type: Dataset
    Format: application/zip, 277.8 kBytes
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-04-21
    Keywords: DrescherInlet; Marine Mammal Tracking; MMT
    Type: Dataset
    Format: application/zip, 8.3 MBytes
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Bode, Maya; Hagen, Wilhelm; Schukat, Anna; Teuber, Lena; Fonseca-Batista, Debany; Dehairs, Frank; Auel, Holger (2015): Feeding strategies of tropical and subtropical calanoid copepods throughout the eastern Atlantic Ocean – Latitudinal and bathymetric aspects. Progress in Oceanography, 138, 268-282, https://doi.org/10.1016/j.pocean.2015.10.002
    Publication Date: 2024-03-09
    Description: The majority of global ocean production and total export production is attributed to oligotrophic oceanic regions due to their vast regional expanse. However, energy transfers, food-web structures and trophic relationships in these areas remain largely unknown. Regional and vertical inter- and intra-specific differences in trophic interactions and dietary preferences of calanoid copepods were investigated in four different regions in the open eastern Atlantic Ocean (38°N to 21°S) in October/November 2012 using a combination of fatty acid (FA) and stable isotope (SI) analyses. Mean carnivory indices (CI) based on FA trophic markers generally agreed with trophic positions (TP) derived from d15N analysis. Most copepods were classified as omnivorous (CI ~0.5, TP 1.8 to ~2.5) or carnivorous (CI 〉=0.7, TP 〉=2.9). Herbivorous copepods showed typical CIs of 〈=0.3. Geographical differences in d15N values of epi- (200-0 m) to mesopelagic (1000-200 m) copepods reflected corresponding spatial differences in baseline d15N of particulate organic matter from the upper 100 m. In contrast, species restricted to lower meso- and bathypelagic (2000-1000 m) layers did not show this regional trend. FA compositions were species-specific without distinct intra-specific vertical or spatial variations. Differences were only observed in the southernmost region influenced by the highly productive Benguela Current. Apparently, food availability and dietary composition were widely homogeneous throughout the oligotrophic oceanic regions of the tropical and subtropical Atlantic. Four major species clusters were identified by principal component analysis based on FA compositions. Vertically migrating species clustered with epi- to mesopelagic, non-migrating species, of which only Neocalanus gracilis was moderately enriched in lipids with 16% of dry mass (DM) and stored wax esters (WE) with 37% of total lipid (TL). All other species of this cluster had low lipid contents (〈 10% DM) without WE. Of these, the tropical epipelagic Undinula vulgaris showed highest portions of bacterial markers. Rhincalanus cornutus, R. nasutus and Calanoides carinatus formed three separate clusters with species-specific lipid profiles, high lipid contents (〉=41% DM), mainly accumulated as WE (〉=79% TL). C. carinatus and R. nasutus were primarily herbivorous with almost no bacterial input. Despite deviating feeding strategies, R. nasutus clustered with deep-dwelling, carnivorous species, which had high amounts of lipids (〉=37% DM) and WE (〉=54% TL). Tropical and subtropical calanoid copepods exhibited a wide variety of life strategies, characterized by specialized feeding. This allows them, together with vertical habitat partitioning, to maintain high abundance and diversity in tropical oligotrophic open oceans, where they play an essential role in the energy flux and carbon cycling.
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-03-09
    Description: A combined stable isotope and fatty acid trophic biomarker approach was adopted for key zooplankton taxa and higher trophic positions of the northern Humboldt Current System to elucidate the pelagic food-web structure and to better understand trophic interactions. Samples covered an extensive spatial range from 8.5°S to 16°S and a vertical range down to 1,000 m depth. Immediately after each haul, specimens were sorted alive in the lab and apparently live and healthy individuals were stored in vials and deep-frozen at -80°C until further lipid and stable isotope analyses. The comprehensive data set covered over 20 zooplankton taxa and indicated that three biomass-rich crustacean species usually dominated the zooplankton community, i.e., the copepods Calanus chilensis at the surface and Eucalanus inermis in the pronounced oxygen minimum zone and the krill Euphausia mucronata, resulting in an overall low number of major trophic pathways toward anchovies. In addition, the semi-pelagic squat lobster Pleuroncodes monodon appears to play a key role in the benthic-pelagic coupling. By partly feeding on benthic resources and by diel vertical migration, P. monodon provides a unique pathway for returning carbon and energy from the sea floor to the epipelagic layer, increasing the food supply for pelagic fish.
    Keywords: Coastal Upwelling System in a Changing Ocean; CUSCO
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Schukat, Anna; Bode, Maya; Auel, Holger; Carballo, Rodrigo; Martin, Bettina; Koppelmann, Rolf; Hagen, Wilhelm (2013): Pelagic decapods in the northern Benguela upwelling system: Distribution, ecophysiology and contribution to active carbon flux. Deep Sea Research Part I: Oceanographic Research Papers, 75, 146-156, https://doi.org/10.1016/j.dsr.2013.02.003
    Publication Date: 2024-03-13
    Description: Decapods were sampled with a 1 m**2 MOCNESS (mainly upper 1000 m) in the northern Benguela Current during three cruises in December 2009, September/October 2010 and February 2011. Although pelagic decapods are abundant members of the micronekton community, information about their ecophysiology is very limited. Species-specific regional distribution limits were detected for various decapod species (e.g. Plesionika carinata, Sergestes arcticus, Pasiphaea semispinosa). Significant diel vertical migration patterns were determined for three caridean and three penaeiodean species. Biomass was variable and ranged from 23 to 2770 mg dry mass m**-2 with highest values for P. semispinosa. Fatty acid and stable isotope analyses revealed that the examined decapod species are omnivorous tocarnivorous except for the herbivorous to omnivorous species P. carinata. Calanid copepods such as Calanoides carinatus were identified as an important prey item especially for caridean species. Community consumption rates of pelagic decapods derived from respiration rates ranged from 7 mg C m**-2 d**-1 (231S) to 420 mg C m**-2 d**-1 (191S, 171S). A potential active respiratory carbon flux was calculated for migrating pelagic decapods with 4.4 mg C m**- d**-1 for the upper 200 m and with 2.6 mg C m**-2 d**-1 from the base of the euphotic zone to a depth of 600 m. Overall, pelagic decapods apparently play a more prominent role in the northern Benguela Current ecosystem than previously assumed and may exert a substantial predation impact on calanid copepods (up to 13% d**-1 of standing stock).
    Keywords: GENUS; Geochemistry and ecology of the Namibian upwelling system
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-05-17
    Keywords: Prosome, length; Prosome length, standard deviation; Species; TRAFFIC; Trophic Transfer Efficiency in the Benguela Current
    Type: Dataset
    Format: text/tab-separated-values, 561 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-05-17
    Keywords: Acartia, c1-c3, ingestion rate of carbon; Acartia, c4-c5, ingestion rate of carbon; Acartia, female, ingestion rate of carbon; Acartia, male, ingestion rate of carbon; Aetideidae, c1-c3, ingestion rate of carbon; Aetideidae, c4-c5, ingestion rate of carbon; Aetideopsis, c4-c5, ingestion rate of carbon; Aetideus, c4-c5, ingestion rate of carbon; Aetideus, male, ingestion rate of carbon; Aetideus armatus, female, ingestion rate of carbon; Aetideus giesbrechti, female, ingestion rate of carbon; Amallothrix, female, ingestion rate of carbon; Augaptilidae, c1-c3, ingestion rate of carbon; Calanidae, c1-c3, ingestion rate of carbon; Calanoida, biomass as dry weight; Calanoida, ingestion rate of carbon; Calanoida, total; Calanoides natalis, c4-c5, ingestion rate of carbon; Calanoides natalis, female, ingestion rate of carbon; Calanoides natalis, male, ingestion rate of carbon; Calanus agulhensis, c4-c5, ingestion rate of carbon; Calanus agulhensis, female, ingestion rate of carbon; Calanus agulhensis, male, ingestion rate of carbon; Calculated; Candacia, c1-c3, ingestion rate of carbon; Candacia, c4c5, ingestion rate of carbon; Candacia bipinnata, female , ingestion rate of carbon; Candacia curta, female, ingestion rate of carbon; Candacia curta, male, ingestion rate of carbon; Candacia sp., female, ingestion rate of carbon; Centropages brachiatus, c1-c3, ingestion rate of carbon; Centropages brachiatus, c4-c5, ingestion rate of carbon; Centropages brachiatus, female, ingestion rate of carbon; Centropages brachiatus, male, ingestion rate of carbon; Centropages bradyi, c1-c3, ingestion rate of carbon; Centropages bradyi, c4-c5, ingestion rate of carbon; Chiridius gracilis, c4-c5, ingestion rate of carbon; Chiridius gracilis, female, ingestion rate of carbon; Clausocalanidae, ingestion rate of carbon; Comment; Cyclopoida, biomass as dry weight; Cyclopoida, ingestion rate of carbon; Cyclopoida, total; Date/Time of event; Depth, bottom/max; Depth, top/min; DEPTH, water; Elevation of event; Euaugaptilus palumboi, c4-c5, ingestion rate of carbon; Euaugaptilus palumboi, female, ingestion rate of carbon; Eucalanus hyalinus, female, ingestion rate of carbon; Eucalanus hyalinus, male, ingestion rate of carbon; Euchaeta, c1-c3, ingestion rate of carbon; Euchaeta, c4-c5, ingestion rate of carbon; Euchaeta acuta, female, ingestion rate of carbon; Euchaeta acuta, male, ingestion rate of carbon; Euchaeta marina, female, ingestion rate of carbon; Euchaeta media, female, ingestion rate of carbon; Euchaeta sp., male, ingestion rate of carbon; Euchirella rostrata, c4-c5, ingestion rate of carbon; Euchirella sp., c1-c3, ingestion rate of carbon; Euchirella sp., c4-c5, ingestion rate of carbon; Event label; Gaetanus brevispinus, male, ingestion rate of carbon; Gaetanus cf. minor, c1-c3, ingestion rate of carbon; Gaetanus cf. minor, c4-c5, ingestion rate of carbon; Gaetanus sp., c4-c5, ingestion rate of carbon; Gaetanus spp., c1-c3, ingestion rate of carbon; Haloptilus longicornis, c1-c3, ingestion rate of carbon; Haloptilus longicornis, c4-c5, ingestion rate of carbon; Haloptilus longicornis, female, ingestion rate of carbon; Haloptilus oxycephalus, female, ingestion rate of carbon; Heterorhabdus spp., c1-c3, ingestion rate of carbon; Heterorhabdus spp., c4-c5, ingestion rate of carbon; Heterorhabdus spp., female, ingestion rate of carbon; Heterorhabdus spp., male, ingestion rate of carbon; Labidocera acuta, female, ingestion rate of carbon; Latitude of event; Longitude of event; Lophothrix frontalis, c4-c5, ingestion rate of carbon; Lophothrix latipes, female, ingestion rate of carbon; Lucicutia, maleagna, female, ingestion rate of carbon; Lucicutia clausii, c4-c5, ingestion rate of carbon; Lucicutia clausii, female, ingestion rate of carbon; Lucicutia clausii, male, ingestion rate of carbon; Lucicutia gaussae, female, ingestion rate of carbon; Lucicutia ovalis, male, ingestion rate of carbon; Lucicutia spp., c1-c3, ingestion rate of carbon; Lucicutia spp., c4-c5, ingestion rate of carbon; Lucicutia spp., female, ingestion rate of carbon; Lucicutia spp., male, ingestion rate of carbon; M153; M153_11-4; M153_12-4; M153_18-15; M153_6-4; M153_7-5; M153_8-4; M153_9-3; Mesocalanus tenuicornis, c1-c3, ingestion rate of carbon; Mesocalanus tenuicornis, c4-c5, ingestion rate of carbon; Mesocalanus tenuicornis, female, ingestion rate of carbon; Mesocalanus tenuicornis, male, ingestion rate of carbon; Meteor (1986); Metridia brevicauda, c4-c5, ingestion rate of carbon; Metridia brevicauda, female, ingestion rate of carbon; Metridia brevicauda, male, ingestion rate of carbon; Metridia effusa, c4-c5, ingestion rate of carbon; Metridia effusa, female, ingestion rate of carbon; Metridia effusa, male, ingestion rate of carbon; Metridia lucens, c4-c5, ingestion rate of carbon; Metridia lucens, female, ingestion rate of carbon; Metridia lucens, male, ingestion rate of carbon; Metridia venusta, c4-c5, ingestion rate of carbon; Metridia venusta, female, ingestion rate of carbon; Metridia venusta, male, ingestion rate of carbon; Metridinidae, c1-c3, ingestion rate of carbon; Monacilla sp., male, ingestion rate of carbon; MSN; Multiple opening/closing net; Nannocalanus, minor, c4-c5, ingestion rate of carbon; Nannocalanus, minor, female, ingestion rate of carbon; Nannocalanus, minor, male, ingestion rate of carbon; Neocalanus gracilis, c1-c3, ingestion rate of carbon; Neocalanus gracilis, c4-c5, ingestion rate of carbon; Neocalanus gracilis, female, ingestion rate of carbon; Neocalanus gracilis, male, ingestion rate of carbon; Nullosetigera helgae, female, ingestion rate of carbon; Nullosetigera impar, female, ingestion rate of carbon; Nullosetigera spp., c4-c5, ingestion rate of carbon; Oithona, ingestion rate of carbon; Oncaeidae, ingestion rate of carbon; Pareucalanus sp., c1-c3, ingestion rate of carbon; Pareucalanus sp., c4-c5, ingestion rate of carbon; Pleuromamma abdominalis, c1-c3, ingestion rate of carbon; Pleuromamma abdominalis, c4-c5, ingestion rate of carbon; Pleuromamma abdominalis, female, ingestion rate of carbon; Pleuromamma abdominalis, male, ingestion rate of carbon; Pleuromamma quadrungulata, c1-c3, ingestion rate of carbon; Pleuromamma quadrungulata, c4-c5, ingestion rate of carbon; Pleuromamma quadrungulata, female, ingestion rate of carbon; Pleuromamma quadrungulata, male, ingestion rate of carbon; Pleuromamma robusta, c4-c5, ingestion rate of carbon; Pleuromamma robusta, male, ingestion rate of carbon; Pleuromamma spp. small, c4-c5, ingestion rate of carbon; Pleuromamma spp. small, female, ingestion rate of carbon; Pleuromamma spp. small, male, ingestion rate of carbon; Pleuromamma xiphias, c4-c5, ingestion rate of carbon; Pleuromamma xiphias, female, ingestion rate of carbon; Pleuromamma xiphias, male, ingestion rate of carbon; Pseudoamallothrix sp., c4-c5, ingestion rate of carbon; Pseudoamallothrix sp., female, ingestion rate of carbon; Pseudochirella sp., c4-c5, ingestion rate of carbon; Rhincalanus cornutus, c4-c5, ingestion rate of carbon; Rhincalanus cornutus, female, ingestion rate of carbon; Rhincalanus nasutus, c1-c3, ingestion rate of carbon; Rhincalanus nasutus, c4-c5, ingestion rate of carbon; Rhincalanus nasutus, female, ingestion rate of carbon; Rhincalanus nasutus, male, ingestion rate of carbon; Scaphocalanus curtus, female, ingestion rate of carbon; Scaphocalanus spp., c1-c3, ingestion rate of carbon; Scaphocalanus spp., c4-c5, ingestion rate of carbon; Scaphocalanus spp., female, ingestion rate of carbon; Scaphocalanus spp., male, ingestion rate of carbon; Scolecithricella spp., c1-c3, ingestion rate of carbon; Scolecithricella spp., c4-c5, ingestion rate of carbon; Scolecithricella spp., female, ingestion rate of carbon; Scolecithricella spp., male, ingestion rate of carbon; Scolecithrix bradyi, c4-c5, ingestion rate of carbon; Scolecithrix bradyi, female, ingestion rate of carbon; Scolecithrix bradyi, male, ingestion rate of carbon; Scolecithrix
    Type: Dataset
    Format: text/tab-separated-values, 4725 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-05-17
    Description: Small copepod genera play an important role in marine food webs and biogeochemical fluxes but have been neglected in many studies. Abundance, biomass and carbon consumption rates of small- (〈1 mm prosome length (PL)), medium- (1-1.5 mm PL) and large-sized (〉2 mm PL) copepods along a cross-shelf transect in the southern Benguela upwelling system were determined using rather high taxonomic resolution. Zooplankton samples were collected with a Multinet (Hydrobios Multinet midi, 5 nets with 200 µm meshsize) during the Meteor cruise M153 in February/March 2019. Calanoids contributed on average 55 ± 19% to total copepod abundance and 82 ± 13% to total copepod biomass. Small-sized Oithona spp. (119/114 mg C m-2 d-1) and Clauso-/Paracalanidae (87/263 mg C m-2 d-1) as well as large-sized Calanoides natalis (47/193 mg C m-2 d-1) were the dominant consumers at the most inshore stations. Small and medium-sized copepodite stages of Metridia lucens were also important, especially towards the continental slope. At offshore stations, Para-/Clausocalanidae (17-27 mg C m-2 d-1), Oithona spp. (9-16 mg C m-2 d-1), Pleuromamma spp. (0-16 mg C m-2 d-1), Calanus agulhensis (0-15 mg C m-2 d-1), Acartia spp. (0-12 mg C m-2 d-1), C. natalis (0-10 mg C m-2 d-1) and M. lucens (2-6 mg C m-2 d-1) were dominant consumers. Hence, usually small- and medium-sized copepods dominated total copepod ingestion, emphasizing that inadequate representation of small copepods will lead to significant underestimations and misinterpretations of the functioning of zooplankton communities, and finally to inadequate biogeochemical models.
    Keywords: TRAFFIC; Trophic Transfer Efficiency in the Benguela Current
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...