GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (84)
  • English  (84)
Document type
Source
Keywords
Language
  • 1
    Publication Date: 2020-02-12
    Description: On 2012 May 20 and 29, two damaging earthquakes with magnitudes Mw 6.1 and 5.9, respectively, struck the Emilia-Romagna region in the sedimentary Po Plain, Northern Italy, causing 26 fatalities, significant damage to historical buildings and substantial impact to the economy of the region. The earthquake sequence included four more aftershocks with Mw ≥ 5.0, all at shallow depths (about 7–9 km), with similar WNW–ESE striking reverse mechanism. The timeline of the sequence suggests significant static stress interaction between the largest events. We perform here a detailed source inversion, first adopting a point source approximation and considering pure double couple and full moment tensor source models. We compare different extended source inversion approaches for the two largest events, and find that the rupture occurred in both cases along a subhorizontal plane, dipping towards SSW. Directivity is well detected for the May 20 main shock, indicating that the rupture propagated unilaterally towards SE. Based on the focal mechanism solution, we further estimate the co-seismic static stress change induced by the May 20 event. By using the rate-and-state model and a Poissonian earthquake occurrence, we infer that the second largest event of May 29 was induced with a probability in the range 0.2–0.4. This suggests that the segment of fault was already prone to rupture. Finally, we estimate peak ground accelerations for the two main events as occurred separately or simultaneously. For the scenario involving hypothetical rupture areas of both main events, we estimate Mw = 6.3 and an increase of ground acceleration by 50 per cent. The approach we propose may help to quantify rapidly which regions are invested by a significant increase of the hazard, bearing the potential for large aftershocks or even a second main shock.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-12
    Description: We use traveltime data of local earthquakes and controlled sources observed by a large, temporary, amphibious seismic network to reveal the anatomy of the southcentral Chilean subduction zone (37–39°S) between the trench and the magmatic arc. At this location the giant 1960 earthquake (M = 9.5) nucleated and ruptured almost 1000 km of the subduction megathrust. For the three-dimensional tomographic inversion we used 17,148 P wave and 10,049 S wave arrival time readings from 439 local earthquakes and 94 shots. The resolution of the tomographic images was explored by analyzing the model resolution matrix and conducting extensive numerical tests. The downgoing lithosphere is delineated by high seismic P wave velocities. High v p/v s ratio in the subducting slab reflects hydrated oceanic crust and serpentinized uppermost oceanic mantle. The subducting oceanic crust can be traced down to a depth of 80 km, as indicated by a low velocity channel. The continental crust extends to approximately a 50-km depth near the intersection with the subducting plate. This suggests a wide contact zone between continental and oceanic crust of about 150 km, potentially supporting the development of large asperities. Eastward the crustal thickness decreases again to a minimum of about a 30-km depth. Relatively low v p/v s at the base of the forearc does not support a large-scale serpentinization of the mantle wedge. Offshore, low v p and high v p/v s reflect young, fluid-saturated sediments of forearc basins and the accretionary prism.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-02-12
    Description: In the present paper we describe the on-land field operations integrated in the TOMO-ETNA experiment carried out in June-November 2014 at Mt. Etna volcano and surrounding areas. This terrestrial campaign consists in the deployment of 90 short-period portable three-component seismic stations, 17 Broadband seismometers and the coordination with 133 permanent seismic station belonging to Italy’s Istituto Nazionale di Geofisica e Vulcanologia (INGV). This temporary seismic network recorded active and passive seismic sources. Active seismic sources were generated by an array of air-guns mounted in the Spanish oceanographic vessel “Sarmiento de Gamboa” with a power capacity of up to 5200 cubic inches. In total more than 26,000 shots were fired and more than 450 local and regional earthquakes were recorded. We describe the whole technical procedure followed to guarantee the success of this complex seismic experiment. We started with the description of the location of the potential safety places to deploy the portable network and the products derived from this search (a large document including full characterization of the sites, owners and indication of how to arrive to them). A full technical description of the seismometers and seismic sources is presented. We show how the portable seismic network was deployed, maintained and recovered in different stages. The large international collaboration of this experiment is reflected in the participation of more than 75 researchers, technicians and students from different institutions and countries in the on-land activities. The main objectives of the experiment were achieved with great success.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-02-12
    Description: In May 2018 a volcano-seismic sequence accompanied the upward migration of a magmatic intrusion from Moho depth to the seafloor led to the drainage of the deep magmatic reservoir and to the birth of a submarine volcano offshore the island of Mayotte, Comoro Islands. This process of magma transport was accompanied by an intense seismic swarm and peculiar long-duration very long period signals. Between 1 January 2018 and 1 May 2019 we detected 407 sources of very long period signals and 6990 volcano-tectonic earthquakes. This report collects detection, location and source parameters catalogs for these two sets of earthquake sources. This data publication provides the catalogues of very long period (VLP) signals and volcano-tectonic (VT) earthquakes, as discussed in Cesca et al. (2019). Here, methods and data used to create the different catalogues are only briefly discussed; a more accurate description is given in Cesca et al. (2019), which furthermore discusses the different processes of dike migration, undersea eruption, deep reservoir drainage and overburden sagging which are responsible for the seismic activity.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  Journal of Seismology
    Publication Date: 2020-02-12
    Description: An early detection of the presence of rupture directivity plays a major role in the correct estimation of ground motions and risks associated to the earthquake occurrence. We present here a simple method for a fast detection of rupture directivity, which may be additionally used to discriminate fault and auxiliary planes and have first estimations of important kinematic source parameters, such as rupture length and rupture time. Our method is based on the inversion of amplitude spectra from P-wave seismograms to derive the apparent duration at each station and on the successive modelling of its azimuthal behaviour. Synthetic waveforms are built assuming a spatial point source approximation, and the finite apparent duration of the spatial point source is interpreted in terms of rupture directivity. Since synthetic seismograms for a point source are calculated very quickly, the presence of directivity may be detected within few seconds, once a focal mechanism has been derived. The method is here first tested using synthetic datasets, both for linear and planar sources, and then successfully applied to recent Mw 6.2–6.8 shallow earthquakes in Peloponnese, Greece. The method is suitable for automated application and may be used to improve kinematic waveform modelling approaches.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-02-12
    Description: The Iquique Local Network (ILN), a temporal network of broadband and short period seismic stations has been operating in Northern Chile since 2009. The aim of this installation was to locally densify the permanent seismic installation of the Integrated Plate Boundary Observatory in Chile (IPOC), with the main goal to decrease the magnitude of detected earthquake, to improve the hypocentral location accuracy, to allow a more accurate investigation of seismic source parameters, and to analyse proposed seismogenic structures of the Northern Chile seismic gap. The network setup evolved with time, with different geometries at different installation phases, aiming to study different seismicity features. In the first phase, started in 2009 and operational since 2010 until autumn 2013, the network had a sparse configuration, targeting a broad region extending from 19.5° S in the North to approximately 21.3° S South of Iquique. In the following stage, operational until fall 2017, most broadband stations were rearranged into a small aperture seismic array (PicArray) close to the village of Pica, to monitor with array techniques the shallow seismicity at the plate interfacer, intermediate and deep focus seismicity. These data are freely available under the Creative Commons Attribution 4.0 International Licence (CC BY 4.0) at the GEOFON data centre under network code IQ.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-02-12
    Description: The 2014 April 1, Mw 8.1 Iquique (Chile) earthquake struck in the Northern Chile seismic gap. With a rupture length of less than 200 km, it left unbroken large segments of the former gap. Early studies were able to model the main rupture features but results are ambiguous with respect to the role of aseismic slip and left open questions on the remaining hazard at the Northern Chile gap. A striking observation of the 2014 earthquake has been its extensive preparation phase, with more than 1300 events with magnitude above ML 3, occurring during the 15 months preceding the main shock. Increasing seismicity rates and observed peak magnitudes accompanied the last three weeks before the main shock. Thanks to the large data sets of regional recordings, we assess the precursor activity, compare foreshocks and aftershocks and model rupture preparation and rupture effects. To tackle inversion challenges for moderate events with an asymmetric network geometry, we use full waveforms techniques to locate events, map the seismicity rate and derive source parameters, obtaining moment tensors for more than 300 events (magnitudes Mw 4.0–8.1) in the period 2013 January 1–2014 April 30. This unique data set of fore- and aftershocks is investigated to distinguish rupture process models and models of strain and stress rotation during an earthquake. Results indicate that the spatial distributions of foreshocks delineated the shallower part of the rupture areas of the main shock and its largest aftershock, well matching the spatial extension of the aftershocks cloud. Most moment tensors correspond to almost pure double couple thrust mechanisms, consistent with the slab orientation. Whereas no significant differences are observed among thrust mechanisms in different areas, nor among thrust foreshocks and aftershocks, the early aftershock sequence is characterized by the presence of normal fault mechanisms, striking parallel to the trench but dipping westward. These events likely occurred in the shallow wedge structure close to the slab interface and are consequence of the increased extensional stress in this region after the largest events. The overall stress inversion result suggests a minor stress rotation after the main shock, but a significant release of the deviatoric stress. The temporal change in the distribution of focal mechanisms can also be explained in terms of the spatial heterogeneity of the stress field: under such interpretation, the potential of a large megathrust earthquake breaking a larger segment offshore Northern Chile remains high.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-02-12
    Description: On 2001 May 7, following unintentional water injection, a moderate size induced earthquake struck the Ekofisk oil field, North Sea. Despite of its relatively moderate magnitude, clear low-frequency waveforms could be recorded up to more than 2000 km epicentral distance, suggesting a slow rupture at very shallow depth and wave propagation through low-velocity shallow structures. The event poses a rare opportunity to constrain rupture velocity, duration and rise time of a superficial M 〉 4 event occurring on a horizontal plane in soft, water-saturated sediments. Two previous studies discussed the earthquake point source finding vertical dip-slip focal mechanisms with opposite senses of P and T axes. A further investigation was thus required to provide a basis for a deeper discussion of the failure dynamics. We significantly improve the used data set, test different earth models and derive a point source as well as a kinematic rupture model. We carefully discuss parameter uncertainties and effects related to shallow sources and wave propagation through different crustal structures to resolve the previous controversy. We additionally provide a kinematic rupture model, based on apparent source times derived from Rayleigh and Love waves. The waveforms resolve a predominant unilateral rupture along a horizontal plane at about 2 km depth. We derive an unusually slow rupture, consequence of a slow rupture velocity of about 500 m s –1 and a long rise time of about 7 s. An independent modelling of GPS- based static displacements allows to confirm the focal mechanism polarity and to locate the centroid at the eastern side of the field, resulting in a much larger seismic moment in comparison with dynamic seismic moment. The rupture directivity is confirmed by the relative location of the centroid with respect to the epicentre, which is set at the site of water injection.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-07-08
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-07-22
    Description: The densely populated neighborhoods of Pinheiro, Bebedouro, Mutange, Bom Parto and Levada in the Municipality of Maceió (Brazil) are suffering serious geological instability. Fractures, on both buildings and roads, have intensified since the beginning of 2018 and some of the areas were evacuated, due to safety reasons, by the local authorities during the second half of 2019. The preliminary investigation conducted by the Brazilian Geological Service (Serviço Geologico do Brazil - CPRM), suggested that the direct cause of the instability is connected to the salt mining activities carried out on near the cost of the Mundaú Lagoon. In this study we use radar interferomtery (InSAR) and 2D geomechanical modelling to characterize almost 16 years of continuous deformation in Municipality of Maceió (Brazil). We exploited the full potential of the well-known Multi Temporal Interferometry techniques (MTI) based on Advanced Synthetic Aperture Radar Differential Interferometry (A-DInSAR) and processed all available historical and currently operational SAR missions: the C-band ASAR ENVISAT, the L-band ALOS-1 POLSAR, L-band ALOS-2 POLSAR and C-band Sentinel-1 missions. The results show clear main deformation field over the neighborhood of Pinheiro with concentric pattern to the shore and increasing deformation intensity up to 25cm per year from 2003 to 2019. A minor deformation area is detected also south of the lagoon corresponding to the neighborhood of Bom Parto and Levada. A 2D geomechanical modelling of salt-cavern stability using Distinct Elements is developed to derive the relationship between the detected deformations and the salt mining activities. As a general conclusion, our study shows how MTI analysis is very efficient and reliable tool for emergency management purposes. Especially after the launch of the Sentinel-1 mission, which provides an acquisition in single pass every 12 days, we are able to detect when a surface displacement commence and monitor the deformation progress and status in time.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...