GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Language
Years
  • 1
    Publication Date: 2020-02-12
    Description: In the present paper we describe the on-land field operations integrated in the TOMO-ETNA experiment carried out in June-November 2014 at Mt. Etna volcano and surrounding areas. This terrestrial campaign consists in the deployment of 90 short-period portable three-component seismic stations, 17 Broadband seismometers and the coordination with 133 permanent seismic station belonging to Italy’s Istituto Nazionale di Geofisica e Vulcanologia (INGV). This temporary seismic network recorded active and passive seismic sources. Active seismic sources were generated by an array of air-guns mounted in the Spanish oceanographic vessel “Sarmiento de Gamboa” with a power capacity of up to 5200 cubic inches. In total more than 26,000 shots were fired and more than 450 local and regional earthquakes were recorded. We describe the whole technical procedure followed to guarantee the success of this complex seismic experiment. We started with the description of the location of the potential safety places to deploy the portable network and the products derived from this search (a large document including full characterization of the sites, owners and indication of how to arrive to them). A full technical description of the seismometers and seismic sources is presented. We show how the portable seismic network was deployed, maintained and recovered in different stages. The large international collaboration of this experiment is reflected in the participation of more than 75 researchers, technicians and students from different institutions and countries in the on-land activities. The main objectives of the experiment were achieved with great success.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-12
    Description: Plinian and Ignimbrite deposits represent explosive activity (ca. 17-19 cal ka) within the predominantly effusive and mildly explosive (Strombolian) volcanic history of Mount Etna (Italy). Proximal glasses from the Biancavilla Ignimbrites and Unit D Plinian fall deposits are characterised. Fall deposits recorded at Acireale (D1b and D2b) and Giarre (D1a and D2a) are geochemically distinct confirming they relate to different eruptions. The Acireale Plinian fall (D1b and D2b) deposits compositionally overlap with the Biancavilla Ignimbrite deposits. These explosive eruptions from Etna are considered responsible for widespread ash dispersals throughout the central Mediterranean region, producing the marker tephra layers (Y-1/Et-1) recorded in marine and lacustrine sedimentary archives. Stratigraphically these distal tephras occur at or close to the onset of the last deglaciation (Termination 1) within their respective palaeoenvironmental records, therefore making them potentially crucial tephrostratigraphic markers. This study investigates distal tephra deposits thought to be from Etna recorded in the Ionian Sea (Y-1), Lago Grande di Monticchio (LGdM, Italy; tephras TM-11 and TM-12-1), Lago di Mezzano (Italy) and the Haua Fteah cave (Libya). The glass chemistry of Y-1 tephras recorded in the Ionian Sea and at Haua Fteah are consistent with the Biancavilla Ignimbrites (16,965-17,670 cal yrs BP) and the upper Acireale Plinian fall (D2b). The LGdM record indicates that explosive activity on Etna associated with Unit D spans a minimum of 1540 ± 80 varve years. TM-12-1 (19,200-19,804 cal yrs BP) in LGdM appears to represent the oldest distal counterpart of Etna Unit D explosive activity and is associated with the lower Acireale (D1b) Plinian eruption. The proximally undefined TM-11 (17,640-18,324 cal yrs BP) and distal correlatives are geochemically distinct from the Ionian Sea Y-1 tephra. Such significant compositional differences seen between distal tephra layers are not observed within individual proximal units and are likely to indicate that the distal tephras relate to separate eruptive phases. Until proximal relationships can be established, the TM-11 type Y-1 equivalents should be termed TM-11. Great care should be exercised when using these distal ash layers to synchronise sedimentary records during a crucial period of environmental change.
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-02-12
    Description: The TOMO-ETNA experiment was devised to image of the crust underlying the volcanic edifice and, possibly, its plumbing system by using passive and active refraction/reflection seismic methods. This experiment included activities both on-land and offshore with the main objective of obtaining a new high-resolution seismic tomography to improve the knowledge of the crustal structures existing beneath the Etna volcano and northeast Sicily up to Aeolian Islands. The TOMO ETNA experiment was divided in two phases. The first phase started on June 15, 2014 and finalized on July 24, 2014, with the withdrawal of two removable seismic networks (a Short Period Network and a Broadband network composed by 80 and 20 stations respectively) deployed at Etna volcano and surrounding areas. During this first phase the oceanographic research vessel “Sarmiento de Gamboa” and the hydro-oceanographic vessel “Galatea” performed the offshore activities, which includes the deployment of ocean bottom seismometers (OBS), air-gun shooting for Wide Angle Seismic refraction (WAS), Multi-Channel Seismic (MCS) reflection surveys, magnetic surveys and ROV (Remotely Operated Vehicle) dives. This phase finished with the recovery of the short period seismic network. In the second phase the Broadband seismic network remained operative until October 28, 2014, and the R/V “Aegaeo” performed additional MCS surveys during November 19-27, 2014. Overall, the information deriving from TOMO-ETNA experiment could provide the answer to many uncertainties that have arisen while exploiting the large amount of data provided by the cutting-edge monitoring systems of Etna volcano and seismogenic area of eastern Sicily.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-11-30
    Description: Sensitivity analysis and uncertainty estimation are crucial to the validation and calibration of numerical models. In this paper we present the application of sensitivity analyses, parameter estimations and Monte-Carlo uncertainty analyses on TEPHRA, an advection-diffusion model for the description of particle dispersion and sedimentation from volcanic plumes. The model and the related sensitivity analysis are tested on two sub-plinian eruptions: the 22 July 1998 eruption of Etna volcano (Italy) and the 17 June 1996 eruption of Ruapehu volcano (New Zealand). Sensitivity analyses are key to (i) constrain crucial eruption parameters (e.g. total erupted mass) (ii) reduce the number of variables by eliminating non-influential parameters (e.g. particle density) and (iii) investigate the interactions among all input parameters (plume height, total grain-size distribution, diffusion coefficient, fall-time threshold and mass-distribution parameter). For the two test cases, we found that the total erupted mass significantly affects the model outputs and, therefore, it can be accurately estimated from field data of the fallout deposit, whereas the particle density can be fixed at its nominal value because it has negligible effects on the model predictions
    Description: Published
    Description: B06202
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: sensitivity analysis; uncertainty estimation; tephra dispersal models; Etna; Ruapehu. ; 05. General::05.01. Computational geophysics::05.01.04. Statistical analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-11-30
    Description: In this paper we present a probabilistic hazard assessment for tephra fallout at Mt. Etna (Italy) associated with both short- and long-lived eruptions. Eruptive scenarios and eruption source parameters were defined based on the geological record, while an advection–diffusion–sedimentation model was used to capture the variation in wind speed and direction with time after calibration with the field data. Two different types of eruptions were considered in our analysis: eruptions associated with strong short-lived plumes and eruptions associated with weak long-lived plumes. Our probabilistic approach was based on one eruption scenario for both types and on an eruption range scenario for eruptions producing weak long-lived plumes. Due to the prevailing wind direction, the eastern flanks are the most affected by tephra deposition, with the 122 BC Plinian and 2002–2003 eruptions showing the highest impact both on infrastructures and agriculture.
    Description: Published
    Description: 3221– 3233
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: open
    Keywords: tephra hazard assessment ; Etna ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-05-17
    Description: This is the first report in the scientific literature of direct measurement of the terminal settling velocity of volcanic particles during an eruption. Field measurements using a continuous wave X-band disdrometer were carried out at Mt. Etna on 18 and 19 December 2002, when the explosive activity produced a 4 km high volcanic plume. These data allow the estimation of the intensity of the fallout and the measurement of the terminal settling velocities of the volcanic particles in real-time. The main results are: (1) the tested instrument detected coherent falling volcanic particles from 0.2 to 1 mm diameter; (2) measured terminal settling velocities were in agreement with both experimental and theoretical methods; (3) however, the measured velocities were clustered around few discrete values, rather than a range of velocities as would be expected if the particles were falling simultaneously and discretely. This new methodology has many new applications for local hazard mitigation and improved understanding of fallout processes.
    Description: Published
    Description: 1-5
    Description: partially_open
    Keywords: Volcanology: Explosive volcanism ; Volcanology: Remote sensing of volcanoes ; Volcanology: Instruments and techniques ; Volcanology: Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 490 bytes
    Format: 163670 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-04-07
    Description: The TOMO-ETNA experiment was planned in order to obtain a detailed geological and structural model of the continental and oceanic crust beneath Mt. Etna volcano and northeastern Sicily up to the Aeolian Islands (southern Italy), by integrating data from active and passive refraction and reflection seismic methodologies, magnetic and gravity surveys. This paper focuses on the marine activities performed within the experiment, which have been carried out in the Ionian and Tyrrhenian Seas, during three multidisciplinary oceanographic cruises, involving three research vessels (“Sarmiento de Gamboa”, “Galatea” and “Aegaeo”) belonging to different countries and institutions. During the offshore surveys about 9700 air-gun shots were produced to achieve a high-resolution seismic tomography through the wide-angle seismic refraction method, covering a total of nearly 2650 km of shooting tracks. To register ground motion, 27 ocean bottom seismometers were deployed, extending the inland seismic permanent network of the Istituto Nazionale di Geofisica e Vulcanologia (INGV) and a temporary network installed for the experiment. A total of 1410 km of multi-channel seismic reflection profiles were acquired to image the subsurface of the area and to achieve a 2D velocity model for each profile. Multibeam sonar and sub bottom profiler data were also collected. Moreover, a total of 2020 km of magnetic and 680 km of gravity track lines were acquired to compile magnetic and gravity anomaly maps offshore Mt. Etna volcano. Here, high-resolution images of the seafloor, as well as sediment and rock samples, were also collected using a remotely operated vehicle.
    Description: Published
    Description: S0428
    Description: 3A. Ambiente Marino
    Description: JCR Journal
    Description: open
    Keywords: Scientific cruise report ; Marine geophysical data acquisition ; Etna offshore ; Ionian and Tyrrhenian Seas ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-12-21
    Description: Volcanic ash clouds produced by explosive eruptions represent a strong problem for civil aviation, road transportation and other human activities. Since Etna volcano produced in the last 35 years more the 200 explosive eruptions of small and medium size. The INGV, liable for its volcano monitoring, developed since 2006 a specific system for forecasting and monitoring Etna’s volcanic ash plumes in collaboration with several national and international institutions. Between 12 January 2011 and 31 December 2013 Etna produced forty-six basaltic lava fountains. Every paroxysm produced an eruption column ranging from a few up to eleven kilometers of height above sea level. The ash cloud contaminated the controlled airspace (CTR) of Catania and Reggio Calabria airports and caused tephra fallout on eastern Sicily sometime disrupting the operations of these airports. In order to give prompt and detailed warnings to the Aviation and Civil Protection authorities, ash plumes monitoring at Osservatorio Etneo, the INGV department in Catania, is carried out using multispectral (from visible to infrared) satellite and ground-based video-surveillance images; seismic and infrasound signals processed in real-time, a Doppler RADAR (Voldorad IIB) able to detect the eruption column in all weather conditions and a LIDAR (AMPLE) for retrieving backscattering and depolarization values of the ash clouds. Forecasting is performed running tephra dispersal models using weather forecast data, and then plotting results on maps published on a dedicated website. 24/7 Control Room operators were able to timely nform Aviation and Civil Protection operators for an effective aviation safety management. A variety of multidisciplinary activities are planned in the MED-SUV project with reference to volcanic ash observations and studies. These include: 1) physical and analogue laboratory experiments on ash dispersal and aggregation; 2) integration of satellite data (e.g. METEOSAT, MODIS) and ground- based measurements (e.g., RADAR, LIDAR) of Etna’s volcanic plumes to quantify mass eruption rate, grain-size distribution at source, and ash cloud concentration; 3) improvement of tools and automatic procedures for the short-term forecasting of volcanic ash dispersal by adopting a multi-model and multi-scenario approach; 4) development of short-term forecasting tools able to use direct measurements of the plume and ash cloud in almost real time (now-casting); 5) development of long-term probabilistic ash fallout maps at the supersite volcanoes.
    Description: Published
    Description: Vienna, Austria
    Description: 4V. Vulcani e ambiente
    Description: open
    Keywords: Ash plume monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Abstract
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-12-15
    Description: We report on a systematic record of SO2 flux emissions from individual vents of Etna volcano (Sicily), which we obtained using a permanent UV camera network. Observations were carried out in summer 2014, a period encompassing two eruptive episodes of the New South East Crater (NSEC) and a fissure-fed eruption in the upper Valle del Bove. We demonstrate that our vent-resolved SO2 flux time series allow capturing shifts in activity from one vent to another and contribute to our understanding of Etna’s shallowplumbingsystemstructure.We findthatthe fissureeruptioncontributed~50,000tofSO2 or~30%of the SO2 emitted by the volcano during the 5 July to 10 August eruptive interval. Activity from this eruptive ventgraduallyvanishedon10August,markingaswitchofdegassingtowardtheNSEC.Onsetofdegassingat the NSEC was a precursory to explosive paroxysmal activity on 11–15 August.
    Description: Published
    Description: 7511-7519
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: Records of SO2 flux emissions from Etna’sindividualventsallowcapturing shifts in volcanic activity ; Vent-resolved SO2 flux time series provide constraints on geometry of the shallow plumbing system ; Vent-resolved SO2 flux time series demonstrate SO2 flux increase precursory to paroxysmal (lava fountaining) activity ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-12-21
    Description: Explosive events, lava-fountains and effusions frequently characterize eruptive activity at Etna. Consequently, the town of Catania and many local municipalities are potentially exposed to ash fallout and lava flows. Besides volcanic hazard, earthquakes and landslides affect this volcanic region as well. The Task 5.1 of the European project "MED-SUV'' (Grant Agreement n°. 308665) deals with the observation of these threatening phenomena from space and ground and their characterization and understanding. The Task encompasses six subtasks, which focus on and analyze the aforementioned hazards in terms of their characteristics, duration and spatial dimension: • Test cases for significant eruptive events have been defined by the subtask 5.1.1. The time span from 2005 to 2011 was chosen for its wealth of eruptive episodes and their well-documented evolution; • The mapping of eruptive products from satellite data will allow us the improvement of the interpretation and modeling of the mechanisms of cone-forming and lava flow emplacement. This topic is developed in the subtask 5.1.2; • Multidisciplinary experiments are planned in the subtask 5.1.3, and will be carried out at the North­ East Crater in July 2014; • Another important deliverable is given by tools of data mining proposed by the subtask 5.1.4. These tools will be available for the analysis of parameters of whatever nature (e.g., geochemical, geophysical), providing they are processed in numerical format; • The subtask 5.1.5 provides a characterization of the volcanic plume and eruptive products, with an integrated analysis of atmospheric, satellite and ground-based measurements, which play an important role in ash-cloud dispersal models; • The sub 5.1.6 focuses on landslide susceptibility analysis and zoning. The goal will be to highlight the regional distribution of potentially unstable slopes based on a detailed study of the factors responsible for landslides.
    Description: Published
    Description: Nicolosi (Catania), Italy
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: open
    Keywords: Etna ; volcanic activity ; threatening phenomena ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...