GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • GEOMAR Catalogue / E-Books  (3)
  • EBook Library  (3)
  • Singapore :Springer Singapore Pte. Limited,  (3)
Document type
  • GEOMAR Catalogue / E-Books  (3)
Source
  • EBook Library  (3)
Publisher
Language
Years
DDC
  • 1
    Online Resource
    Online Resource
    Singapore :Springer Singapore Pte. Limited,
    Keywords: Microbial fuel cells. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (296 pages)
    Edition: 1st ed.
    ISBN: 9789811571909
    Series Statement: Clean Energy Production Technologies Series
    DDC: 614.42
    Language: English
    Note: Intro -- Foreword -- Acknowledgments -- Contents -- About the Editors -- Chapter 1: An Introduction to Algal Biofuels -- 1.1 Introduction -- 1.2 Algal Species Involved in Biofuel Production -- 1.3 Types of Biofuels Produced from Microalgae -- 1.3.1 Biodiesel -- 1.3.2 Biobutanol -- 1.3.3 Biogasoline -- 1.3.4 Methane -- 1.3.5 Ethanol -- 1.4 Nutrients and Growth Inputs for Algal Growth -- 1.4.1 Bold´s Basal Medium (BBM) -- 1.4.2 Acidified Bold´s Basal Medium -- 1.4.3 BG11 (Blue-Green Medium) -- 1.4.4 Chu10 Medium -- 1.4.5 Wastewater as a Source of Nitrogen and Phosphate -- 1.4.6 Impact of Growth Conditions on Microalgal Biomass -- 1.5 Different Microalgae Cultivation Methods -- 1.5.1 Open System -- 1.5.2 Closed Systems or Indoor Photobioreactors (PBRs) -- 1.6 Concept of Biorefineries -- 1.6.1 Evaluation of the Biorefinery Processes -- 1.7 Advantage and Disadvantage of Biofuels -- 1.8 Policies Regarding Algal Biofuels Worldwide -- 1.8.1 Indian National Policy of Biofuel 2008 -- 1.8.2 Biofuel Policies in the United States -- 1.8.3 Biofuel Policies in Canada -- 1.9 Companies Involved in Algal Biofuel Production -- 1.10 Conclusion -- References -- Chapter 2: Paper Mill Sludge as a Potential Feedstock for Microbial Ethanol Production -- 2.1 Introduction -- 2.2 Bioethanol: A Sustainable Renewable Biofuel -- 2.3 Common Feedstocks Used for Bioethanol Production -- 2.3.1 Rice Straw -- 2.3.2 Sugarcane Bagasse -- 2.3.3 Sugarcane Tops -- 2.3.4 Waste Paper -- 2.3.5 Paper Mill Sludge -- 2.4 Pulp and Paper Mill Industry -- 2.5 Paper-Making Process -- 2.6 Preparation of Raw Materials and Processing -- 2.6.1 Pulping -- 2.6.2 Pulp Washing and Chemical Recovery -- 2.6.3 Bleaching -- 2.6.4 Paper Pressing and Paper Making -- 2.6.5 Paper Mill Sludge as a By-Product -- 2.7 Indian Scenario of Paper Mills -- 2.8 Paper Mill Sludge -- 2.8.1 Paper Mill Sludge Composition. , 2.8.2 Environmental Impacts of Paper Mill Sludge -- 2.8.3 Industrial Uses of Paper Mill Sludge -- 2.8.3.1 Brick Manufacture -- 2.8.3.2 Anaerobic Digestion -- 2.8.3.3 Cement Base -- 2.8.3.4 Soil Conditioner -- 2.8.3.5 Bioethanol -- 2.9 Paper Mill Sludge Resource for Bioethanol Production -- 2.10 Steps Involved in Bioethanol Production -- 2.11 Pre-treatment Techniques Employed in Paper Mill Sludge -- 2.11.1 Acid Pre-treatment -- 2.11.2 Alkaline Pre-treatment -- 2.11.3 Pulping-Based Pre-treatment -- 2.11.4 Ultrasound Pre-treatment -- 2.11.5 Solvent-Based Pre-treatment -- 2.12 Challenges Faced in Available Pre-treatment Techniques -- 2.12.1 Acid-Based Pre-treatment -- 2.12.2 Alkali-Based Pre-treatment -- 2.12.3 Solvent-Based Pre-treatment -- 2.13 Conclusions and Future Prospects -- References -- Chapter 3: Application of Hydrolytic Enzymes in Biorefinery and Its Future Prospects -- 3.1 Introduction -- 3.2 Biomass Structure -- 3.3 Application of Hydrolytic Enzymes in Generation of Bioethanol from Biomass -- 3.3.1 Cellulase -- 3.3.1.1 Cellulases: Application in Biorefinery -- 3.3.2 Hemicellulases -- 3.3.2.1 Hemicellulases: Application in Biorefinery -- 3.3.3 Ligninolytic Enzymes -- 3.3.3.1 Ligninolytic Enzymes: Application in the Biorefinery -- Biological Delignification -- 3.3.4 Lytic Polysaccharide Monooxygenases (LPMOs) -- 3.3.4.1 LPMOs: Application in Biorefinery -- 3.3.5 Amylases -- 3.3.5.1 Amylases: Application in Biorefinery -- 3.3.6 Pectinases -- 3.3.7 Lipases -- 3.3.7.1 Lipases: Application in Biorefinery -- 3.3.8 Proteases -- 3.3.8.1 Proteases: Application in Biorefinery -- 3.4 Strategies Employed for Improving the Hydrolytic Enzyme Yield and Efficiency -- 3.4.1 Immobilization of Enzyme -- 3.4.2 Screening of New and Robust Isolates from Extreme Habitats -- 3.4.3 Genetic Engineering. , 3.4.4 Metagenomics Approach for the Identification of the Potential Hydrolytic Enzyme -- 3.5 Integrated Biorefineries: Future of Biomass-Based Biorefinery -- 3.6 Summary -- References -- Chapter 4: Cultivation of Microalgae: Effects of Nutrient Focus on Biofuels -- 4.1 Introduction -- 4.2 Types of Microalgae -- 4.3 Components Present in Algae -- 4.4 Cultivation of Microalgae -- 4.5 Nutritional Requirements of Algae Growth -- 4.5.1 Carbon -- 4.5.2 Nitrogen -- 4.5.3 Phosphorus -- 4.5.4 Macro- and Micronutrients -- 4.5.5 Other Considerations -- 4.6 Bioreactors for Microalgae Cultivation -- 4.6.1 Closed Reactor Designing for Microalgae Cultivation -- 4.6.2 Classification of Photobioreactors (PBRs) -- 4.6.2.1 Light -- 4.6.2.2 Mixing -- 4.6.2.3 Water Consumption -- 4.6.2.4 CO2 Consumption -- 4.6.2.5 O2 Removal -- 4.6.2.6 Nutrient Supply -- 4.6.2.7 Temperature -- 4.6.2.8 pH -- 4.6.3 Other Considerations -- 4.7 Conclusions -- References -- Chapter 5: Microalgae as an Efficient Feedstock Biomass for Biofuel Production -- 5.1 Introduction -- 5.2 Biofuels from Microalgae Biomass -- 5.3 Harvesting -- 5.3.1 Sedimentation -- 5.3.2 Centrifugation -- 5.3.3 Flocculation -- 5.3.4 Coagulation -- 5.3.5 Floatation -- 5.3.6 Filtration -- 5.3.7 Electrophoresis -- 5.3.8 Ultrasonication -- 5.4 Lipid Extraction -- 5.4.1 Lipid Extraction by a Mechanical Process -- 5.4.2 Lipid Extraction by Chemicals and Solvents -- 5.4.2.1 Acid-Mediated Solvent System -- 5.4.2.2 Supercritical CO2 Fluid Technology -- 5.4.2.3 Ionic Liquids -- 5.4.3 Enzyme-Assisted Extraction -- 5.4.4 Surfactant-Assisted Extraction -- 5.4.5 Osmotic Pressure -- 5.5 Transesterification -- 5.5.1 Supercritical Conditions -- 5.6 Conclusions -- References -- Chapter 6: Microalgae Potential Feedstock for the Production of Biohydrogen and Bioactive Compounds -- 6.1 Introduction -- 6.2 Hydrogen Production. , 6.2.1 Photofermentation -- 6.2.2 Dark Fermentation -- 6.2.3 Hybrid System Using Photosynthetic and Dark Fermentative Bacteria -- 6.3 The Key Enzymes Associated with Hydrogen Production by Photosynthetic Bacteria -- 6.4 Medium Constituents and Cultivation Environments for Photosynthetic Bacteria -- 6.5 Various Parameters Influencing the Biohydrogen Production -- 6.6 Photobioreactor Design for Hydrogen Production -- 6.6.1 Solar Energy Excited Optical Fiber Photobioreactors -- 6.6.2 Photobioreactors with Immobilized Cells -- 6.6.3 The Plate-Type Photobioreactors -- 6.6.4 The LED Photobioreactors -- 6.7 Biomass Pretreatments Influence the H2 Production -- 6.8 Other Environmental Factor Influence on H2 Production -- 6.8.1 Effect of Thermophilic Conditions -- 6.8.2 Effect of Batch, Sequencing Batch, and Semicontinuous Reactions -- 6.8.3 Presence of Methanogenic Microorganisms -- 6.9 Bioactive Compounds -- 6.9.1 Introduction -- 6.9.2 Various Bioactive Compounds -- 6.9.3 Peptides and Polyunsaturated Fatty Acids -- 6.9.4 Anti-inflammatory Agents from Microalgae -- 6.9.5 Antibacterials -- 6.9.6 Antiviral and Anticancer Activities -- 6.10 Microalgae Preservation -- 6.10.1 Preservation by Lower Temperature -- 6.10.2 Preservation by Spray Drying -- 6.10.3 Preservation by Freeze Drying -- 6.10.4 Microencapsulation of Algae -- 6.11 Economic Concerns to Circular Economy -- 6.11.1 Future Prospective in Microalgal Research for Biofuels -- 6.11.2 Future Prospects on Bioactive Compounds -- 6.12 Conclusion -- References -- Chapter 7: Algal Biofuels: An Economic and Effective Alternative of Fossil Fuels -- 7.1 Introduction -- 7.2 Sources of Algal Biomass -- 7.3 Micro- and Macroalgae -- 7.3.1 Microalgae -- 7.3.1.1 Chlorella -- 7.3.1.2 Botryococcus braunii -- 7.3.1.3 Pleurochrysis carterae -- 7.3.1.4 Dunaliella salina -- 7.3.2 Macroalgae -- 7.3.2.1 Gracilaria chilensis. , 7.3.2.2 Sargassum angustifolium -- 7.3.2.3 Sea Lettuce: Ulva lactuca -- 7.4 Nutritional Requirements for the Algal Biomass Production -- 7.5 Energy Requirements for Life Cycle of Algal Biofuels -- 7.5.1 Carbon -- 7.5.2 Nitrogen -- 7.5.3 Phosphorus -- 7.5.4 Other Nutrients -- 7.6 Algal Cultivation Strategies -- 7.6.1 Open Pond Photobioreactor -- 7.6.2 Raceway Pond System -- 7.6.3 Closed-Photobioreactor -- 7.6.4 Hybrid Cultivation System -- 7.7 Harvesting and Drying of Algal Biomass -- 7.8 Biofuel Conversion -- 7.9 Improvement of Algal Biofuels Using Biotechnological Strategies -- 7.10 Economic Aspects of Algal Biofuels -- 7.11 Challenges and Future Perspective -- 7.12 Conclusion -- References -- Chapter 8: Nanocatalysts to Improve the Production of Microbial Fuel Applications -- 8.1 Introduction -- 8.2 Nanomaterial Classification -- 8.3 Nanoparticle Synthesis Techniques -- 8.3.1 Classification of Biofuels -- 8.3.2 Another Classification of Biofuel -- 8.3.2.1 Solid Biofuel -- 8.3.2.2 Liquid Biofuels -- 8.3.2.3 Gas Biofuels -- 8.4 Biofuel Production Methods -- 8.4.1 Gasification -- 8.4.2 Pyrolysis -- 8.4.3 Liquefaction -- 8.4.4 Enzymatic Hydrolysis -- 8.4.5 Transesterification -- 8.4.6 Anaerobic Digestion -- 8.5 Nanocatalysts in Biofuel Production -- 8.6 Nanoparticles in Biomass Pre-treatment -- 8.7 Use of Nanoparticles in the Production and Stability of Cellulase -- 8.8 Nanocatalyst for Biomass Gasification -- 8.9 Conclusion -- References -- Chapter 9: Microbial System: An Emerging Application in the Bioenergy Production -- 9.1 Introduction -- 9.2 Classification of Biofuels -- 9.2.1 First-Generation Biofuels -- 9.2.2 Second-Generation Biofuels -- 9.2.3 Third-Generation Biofuels -- 9.2.4 Fourth-Generation Biofuels -- 9.3 Sources of Biofuel Production -- 9.3.1 Agricultural Waste -- 9.3.2 Microalgae Biomass. , 9.4 Approaches for Microbial Strain Improvement.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Singapore :Springer Singapore Pte. Limited,
    Keywords: Biomass energy-Research. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (318 pages)
    Edition: 1st ed.
    ISBN: 9789811393334
    Series Statement: Clean Energy Production Technologies Series
    DDC: 662.88
    Language: English
    Note: Intro -- Foreword -- Acknowledgments -- Contents -- About the Editors -- 1: Biofuel: Types and Process Overview -- 1.1 Introduction -- 1.2 Classification of Biofuels -- 1.3 First-Generation Biorefinery -- 1.3.1 Transesterification -- 1.3.2 Ethanol Production -- 1.3.3 Fermentation -- 1.3.4 Anaerobic Fermentation -- 1.3.5 Whole-Crop Utilization -- 1.4 Second-Generation Biofuels -- 1.4.1 Physical Process -- 1.4.1.1 Mechanical Extraction -- 1.4.1.2 Briquetting -- 1.4.1.3 Distillation -- 1.4.2 Thermochemical Conversion -- 1.4.2.1 Combustion -- 1.4.2.2 Gasification -- 1.4.2.2.1 Biomethanol -- 1.4.2.2.2 Methane -- 1.4.2.2.3 Bioethanol Production -- 1.4.3 Liquefaction -- 1.4.4 Pyrolysis of Biomass -- 1.4.4.1 Fast Pyrolysis -- 1.4.4.2 Flash Pyrolysis -- 1.5 Third-Generation Biofuels -- 1.5.1 Open Pond -- 1.5.2 Photobioreactor (PBRs) -- 1.6 Fourth-Generation Biofuel -- 1.6.1 Direct Process for Solar Fuel -- 1.7 Microbial Conversion -- 1.8 Enzymatic Conversion to Biofuel -- 1.8.1 Cellulases -- 1.8.2 Xylanases -- 1.8.3 Lignolytic Enzymes -- 1.8.4 Cellobiose Dehydrogenase (CBDH) -- 1.9 Effect of Surfactant on Enzymatic Hydrolysis -- 1.10 Biofuel from Nanotechnology -- 1.11 Lignin Strategy to Biofuel -- 1.11.1 Lignin Structure -- 1.11.2 Lignin Valorization -- 1.12 Sustainability Criteria -- 1.12.1 Food and Feedstock -- 1.12.2 Water Requirement -- 1.12.3 Emissions -- 1.12.4 Biodiversity -- 1.12.5 Policies -- 1.13 Conclusions -- 1.14 Summary -- References -- 2: Applications of Plant-Based Natural Products to Synthesize Nanomaterial -- 2.1 Introduction -- 2.2 Inorganic Nanoparticles Derived from Natural Sources -- 2.3 Biological Synthesis of Nanomaterials -- 2.4 Processing Natural Materials -- 2.5 Plant-Based Synthesis of Metallic NPs and Their Applications -- 2.5.1 Traditional Strategies of Metals. , 2.5.2 Distinctive Strategies for Union Metallic Nanoparticle -- 2.5.3 Bio-based Reduction Strategies -- 2.6 Parts of Plants Used to Synthesize Nanomaterials -- 2.6.1 Flowers -- 2.6.2 Stem -- 2.6.3 Seeds -- 2.6.4 Fruits -- 2.6.5 Leaves -- 2.7 Plant-Derived Formation of Silver Nanoparticles -- 2.8 Plant-Based Gold Nanoparticle -- 2.9 Plant-Based Zinc Oxide Nanoparticles -- 2.10 Biofuel Applications of Nanoparticles -- 2.10.1 Role in Pretreatment -- 2.10.2 Role in Cellulase Production and Stability -- 2.10.3 Role in Saccharification -- 2.11 Optional Metabolite Impact on Bio-decrease Response -- 2.12 Business Uses of Biosynthesized Nanoparticles -- 2.12.1  NPs in Waste Treatment NPs -- 2.12.2 Beautifiers -- 2.12.3 NPs in Food Industry -- 2.13 Component Blend of Metallic NPs -- 2.14 Conclusion -- References -- 3: Application of Plant-Based Natural Product to Synthesize Nanomaterial -- 3.1 Definition of Nanoparticles -- 3.2 Physicochemical Properties and Application of Nanoparticles -- 3.2.1 Silver Nanoparticles (Ag NPs) -- 3.2.2 Zinc Oxide Nanoparticles (ZnO NPs) -- 3.2.3 Titanium Nanoparticles (TiO2 NPs) -- 3.2.4 Copper Nanoparticles (Cu NPs) -- 3.2.5 Gold Nanoparticles (Au NPs) -- 3.3 Synthesis of Nanoparticles -- 3.4 Biosynthesis of Nanoparticles Using Plants -- 3.4.1 The Role of Plant Metabolites in the Reduction of Metal Ions -- 3.4.2 Factors Affecting the Biological Synthesis of Nanoparticles Using Plants -- 3.4.2.1 Influence of Reaction Temperature -- 3.5 Major Nanoparticles Synthesized by Plant Extracts -- 3.5.1 Biosynthesis of Silver Nanoparticles -- 3.5.2 Biosynthesis of Gold Nanoparticles -- 3.5.3 Biosynthesis of Palladium Nanoparticles -- 3.5.4 Biosynthesis of Titanium Dioxide Nanoparticles -- 3.5.5 Biosynthesis of Zinc Oxide Nanoparticles -- 3.5.6 Biosynthesis of Iron Nanoparticles -- References. , 4: Green Synthesis Approach to Fabricate Nanomaterials -- 4.1 Introduction -- 4.2 Synthesis and Characteristics of Nanomaterials -- 4.2.1 Top-Down Approach -- 4.2.2 Bottom-Up Approach -- 4.2.3 Chemical Approach -- 4.3 Green Synthesis Approaches -- 4.4 Plant-Based Synthesis -- 4.5 Bacterial Synthesis -- 4.6 Fungus- and Alga-Based Synthesis -- 4.7 Actinomycete-Based Nanoparticle Synthesis -- 4.8 Viral Particles for Nanoparticle Synthesis -- 4.9 Biological Derivatives for Nanoparticle Synthesis -- 4.10 Green Nanocatalysts -- 4.11 Bioenergy Applications of Nanoparticles -- 4.12 Prospective Applications of Green Synthesized Nanoparticles -- 4.13 Advantages and Disadvantages of Green Synthesis -- 4.14 Future Directions and Conclusions -- References -- 5: Nanomaterials: Types, Synthesis and Characterization -- 5.1 Introduction -- 5.2 Classification -- 5.2.1 Organic Nanoparticles -- 5.2.1.1 Synthesis of Organic Nanoparticles -- 5.2.2 Inorganic Nanoparticles -- 5.2.2.1 Metal Oxide and Metallic Nanoparticles -- 5.2.2.1.1 Synthesis of Metal and Metal Oxide Nanoparticles -- 5.2.3 Carbon-Based -- 5.2.3.1 Graphene -- 5.2.3.1.1 Synthesis of Graphene -- 5.2.3.2 Carbon Nanotubes (CNTs) -- 5.2.3.3 Synthesis of CNTs -- 5.3 Characterization -- 5.3.1 Size Determination -- 5.3.2 Quantification -- 5.4 Applications of the Nanoparticles in Biofuels -- 5.5 Conclusion and Future Remarks -- References -- 6: Nanotechnology: An Application in Biofuel Production -- 6.1 Introduction -- 6.2 Classification of Biofuel -- 6.3 Production of Biofuel -- 6.3.1 Production Techniques for Biofuel -- 6.3.2 Algal Biodiesel -- 6.3.3 Biohydrogen -- 6.4 Synthesis and Properties of Nanomaterials -- 6.5 Application of Nanotechnology in Biofuel Production -- 6.5.1 Biohydrogen Production -- 6.5.1.1 Dark Fermentation for Production of Biohydrogen. , 6.5.1.2 Biohydrogen Production by the Photofermentation Process -- 6.5.2 Biogas Production -- 6.5.3 Biodiesel Production -- 6.5.4 Bioethanol Production -- 6.6 Conclusion -- References -- 7: Nanomaterial Synthesis and Mechanism for Enzyme Immobilization -- 7.1 Introduction -- 7.2 Different Methods of Nanomaterial Synthesis -- 7.2.1 Sol-Gel Synthesis -- 7.2.2 Arc-Discharge Method -- 7.2.3 Hydrothermal Synthesis -- 7.2.4 Solvothermal Synthesis -- 7.2.5 Combustion Synthesis (CS) -- 7.2.6 Microwave Synthesis -- 7.2.7 Experimental Tools and Characterization of Nanomaterials -- 7.2.8 Structural Characterization -- 7.2.9 X-Ray Diffraction (XRD) -- 7.2.10 Small-Angle X-Ray Scattering (SAXS) -- 7.2.11 Electron Microscopy (EM) -- 7.2.12 Scanning Electron Microscopy (SEM) -- 7.2.13 Transmission Electron Microscopy (TEM) -- 7.2.14 Scanning Probe Microscopy (SPM) -- 7.2.15 Chemical Characterization -- 7.2.16 Optical Spectroscopy -- 7.2.16.1 Photoluminescence and UV/Vis Spectroscopy -- 7.2.16.2 Raman Spectroscopy -- 7.2.17 Electron Spectroscopy -- 7.2.17.1 Energy Dispersive X-Ray Spectroscopy (EDS) -- 7.2.17.2 Auger Electron Spectroscopy (AES) -- 7.2.17.3 X-Ray Photoelectron Spectroscopy (XPS) -- 7.2.18 Ionic Spectrometry -- 7.2.18.1 Rutherford Backscattering Spectrometry (RBS) -- 7.2.18.2 Secondary Ion Mass Spectrometry (SIMS) -- 7.3 Enzyme Immobilization -- 7.4 Techniques for Enzyme Immobilization -- 7.5 Application of Nanomaterial-Immobilized Enzyme in Biofuel Production -- 7.6 Conclusions -- References -- 8: Nanomaterial Synthesis and Mechanism for Enzyme Immobilization: Part II -- 8.1 Introduction -- 8.2 Synthesis of Nanomaterials -- 8.2.1 Different Approaches for the Synthesis of Nanomaterials -- 8.2.1.1 Top-Down Approach -- 8.2.1.2 Bottom-Up Approach -- 8.2.2 Methods Involved in Nanomaterial Synthesis. , 8.2.2.1 Physical Methods -- 8.2.2.1.1 High-Energy Ball Milling (HEBM) -- 8.2.2.1.2 Melt Mixing -- 8.2.2.1.3 Laser Ablation -- 8.2.2.1.4 Physical Vapour Deposition -- 8.2.2.2 Chemical Method -- 8.2.2.2.1 Sol-Gel Method -- 8.2.2.2.2 Microemulsion Method -- 8.2.2.2.3 Hydrothermal Method -- 8.2.2.3 Biological Method -- 8.2.2.3.1 Biosynthesis Using Microorganisms -- 8.2.2.3.2 Nanomaterial Synthesis Using Biomolecules as Templates -- 8.2.2.3.3 Nanomaterial Synthesis Using Plant Extracts -- 8.2.2.4 Hybrid Method -- 8.2.2.4.1 Chemical Vapour Deposition and Chemical Vapour Synthesis -- 8.2.3 Synthesis of Nanoparticles -- 8.2.4 Synthesis of Nanowires, Nanorods and Nanotubes -- 8.3 Enzyme Immobilization -- 8.3.1 Active Nanomaterials in Enzyme Immobilization -- 8.3.2 Immobilized Enzymes in Biotechnology -- 8.3.3 Immobilized Enzymes in Biomedicine -- 8.4 Applications of Nanomaterials in Enzyme Immobilization -- 8.4.1 Gold Nanoparticles as Enzyme Immobilization Templates -- 8.5 Conclusion -- References -- 9: Nanomaterial-Immobilized Biocatalysts for Biofuel Production from Lignocellulose Biomass -- 9.1 Introduction -- 9.2 Enzyme Immobilization -- 9.3 Basic of Enzyme Immobilization -- 9.4 Methods of Immobilization -- 9.5 Adsorption of Enzymes -- 9.6 Covalent Binding of Enzymes -- 9.7 Entrapping of Enzymes -- 9.8 Cross-Linking of Enzymes -- 9.9 Nature of Supporting Material for Enzyme Immobilization -- 9.10 Nanomaterial-Based Enzyme Immobilization -- 9.10.1 Enzyme Immobilization Using Magnetic Nanoparticles -- 9.10.2 Novel Nanoparticles for Enzyme Immobilization -- 9.10.3 Enzyme Immobilization Using Nonmagnetic Nanoparticles -- 9.11 Methods of Nanomaterial-Based Enzyme Immobilization -- 9.12 Analytical Tools for Investigating Enzyme-Nanomaterial Interaction. , 9.13 Applications of Nanoparticles in Enzymatic Hydrolysis of Lignocellulose in Biofuel/Bioenergy.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Singapore :Springer Singapore Pte. Limited,
    Keywords: Biotechnology. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (238 pages)
    Edition: 1st ed.
    ISBN: 9789811570704
    Series Statement: Clean Energy Production Technologies Series
    Language: English
    Note: Intro -- Foreword -- Acknowledgements -- Contents -- About the Editors -- Chapter 1: Impact of Fermentation Types on Enzymes Used for Biofuels Production -- 1.1 Introduction -- 1.2 Characteristics of Biofuels -- 1.3 Classification of Biofuels -- 1.4 History of Biofuels -- 1.5 Biofuel Production Process -- 1.5.1 Pre-Treatment -- 1.5.2 Hydrolysis -- 1.5.3 Fermentation -- 1.6 Enzymes in Biofuel Production -- 1.7 Kinetics of Biofuel Synthesis -- 1.8 Factors Affecting the Enzyme Expression Responsible for Biofuel Production -- 1.9 Types of Fermentation for Enzymatic Biofuel Production -- 1.10 Biobutanol Production -- 1.11 Factors Affecting the Fermentation Process -- 1.12 Impact of Fermentation on Enzymes During Biofuels Production -- 1.13 Downstream Processing of Biofuels -- 1.13.1 Gas Stripping and Vacuum Process -- 1.13.2 Biphasic Solvent Extraction -- 1.13.3 Adsorption Based Recovery -- 1.13.4 Recovery of Biofuels Based on Membrane Separation -- 1.13.5 Perstraction -- 1.14 Conclusion -- 1.15 Future Prospects -- References -- Chapter 2: Downstream Processing -- Applications and Recent Updates -- 2.1 Introduction -- 2.2 Stages of Downstream Process -- 2.3 Downstream Process Unit Operations (Fig. 2.2) -- 2.3.1 Separation of Cells and Extracellular Fluid -- 2.3.1.1 Filtration -- 2.3.1.2 Centrifugation -- 2.3.1.3 Gravity Sedimentation -- 2.3.1.4 Flocculation -- 2.3.1.5 Flotation -- 2.3.2 Cell Rupture and Separation of Cell Extract -- 2.3.2.1 Mechanical Rupture -- 2.3.2.2 Non-Mechanical Cell Rupture -- Chemical Extraction -- Biological Rupture -- 2.3.3 Concentration and Purification of Soluble Products -- 2.3.3.1 Precipitation -- 2.3.3.2 Membrane Separation -- 2.3.3.3 Nanofiltration or Reverse Osmosis -- 2.3.3.4 Liquid Extraction -- 2.3.3.5 Chromatography -- Adsorption Chromatography -- Ion Exchange Chromatography -- Affinity Chromatography. , Gel Chromatography -- Electrophoresis -- 2.3.4 Finishing Operations -- 2.3.4.1 Crystallization -- 2.3.4.2 Drying -- 2.4 Applications and Industrial Products -- 2.4.1 Bio-fuels -- 2.4.1.1 Biobutanol -- 2.4.2 Bt Biopesticides -- 2.4.3 Natural Colourant: Carminic Acid -- 2.4.4 Bioethanol -- 2.4.5 Acetic Acid -- 2.4.6 Lactic Acid -- 2.4.7 Citric Acid -- 2.4.7.1 Methods of Fermentation -- 2.4.8 Pencillin -- 2.4.9 Nisin -- 2.4.10 Vitamin B12 -- 2.4.11 Stevia: A Natural Sweetener -- References -- Chapter 3: Types of Bioreactors for Biofuel Generation -- 3.1 Introduction -- 3.2 Microbial Cultivation -- 3.3 Challenges in Biofuel Generation -- 3.4 Submerged Fermentation -- 3.4.1 Batch Type of Fermenter -- 3.4.2 Fed-Batch Fermentation -- 3.4.3 Continuous Type of Bioreactor -- 3.4.3.1 Separate Hydrolysis and Fermentation -- 3.4.3.2 Simultaneous Saccharification and Fermentation -- 3.4.3.3 Simultaneous Saccharification and Co-Fermentation (SmScF) -- 3.5 Direct Microbial Conversion -- 3.6 Concept of Solid State Fermentation-Based Biorefinery -- 3.7 Types of Solid State Fermentation Bioreactors -- 3.7.1 Tray Type Bioreactors (TTB) -- 3.7.2 Packed Bed Type Bioreactor (PBTB) -- 3.7.3 Air Pressure Pulsation Type Bioreactors (APPTB) -- 3.7.4 Intermittent or Continuously Mixed SSF Bioreactor -- 3.8 Solid-State Fermentation versus Submerged Fermentation -- 3.9 Conclusion -- References -- Chapter 4: Bioprocess for Algal Biofuels Production -- 4.1 Introduction -- 4.2 Generation of Biofuels -- 4.3 Different Types of Algal Biofuels -- 4.3.1 Biodiesel -- 4.3.2 Bioethanol -- 4.3.3 Biogas -- 4.4 Characteristics of Algae as Ideal Resource for Biofuel Production -- 4.5 Upstream Processing: Cultivation Techniques of Microalgae for Biofuels Production -- 4.6 Downstream Processing: Harvesting of Algal Biomass -- 4.7 Conclusion -- References. , Chapter 5: Effect of Bioprocess Parameters on Biofuel Production -- 5.1 Introduction -- 5.2 Biofuels Producing Microorganisms -- 5.3 Measuring of Bioprocess Parameters -- 5.4 Bioprocess Parameters Affecting Biofuels Production -- 5.4.1 Physical Parameters -- 5.4.1.1 Role of Temperature in Biofuel Production -- 5.4.1.2 Role of pH in Biofuel Production -- 5.4.1.3 Agitation Rate -- 5.4.1.4 Fermentation Time -- 5.4.2 Nutritional Parameters Affecting Biofuel Production -- 5.4.2.1 Role of Substrate and Effect of Initial Substrate Concentration -- 5.4.2.2 Effect of Different Inoculum Size on Biofuel Production -- 5.4.2.3 Effect of Various Sugars and Their Concentrations -- 5.4.2.4 Effect of Acid Concentration on Biofuel Production -- 5.4.2.5 The Effect of Solvent/Surfactants/Detergents on Biofuel Production -- 5.4.2.6 Effect of Metal Ions on Biofuel Production -- 5.5 Conclusion -- References -- Chapter 6: Role of Substrate to Improve Biomass to Biofuel Production Technologies -- 6.1 Introduction -- 6.2 Composition of Biomass and Its Role in Biofuels Production -- 6.3 Role of Different Substrates in Biofuels Technology -- 6.4 Approaches That Enhance Biomass to Biofuels Production -- 6.4.1 Physical Pretreatment -- 6.4.2 Chemical Pretreatment -- 6.4.3 SPROL Process -- 6.4.4 Ethanol Organosolv Pretreatment -- 6.4.5 Biological Pretreatment -- 6.4.6 Combined Pretreatment Approaches -- 6.4.6.1 Steam Explosion Method -- 6.4.6.2 Supercritical Fluid Extrusion -- 6.4.6.3 Critical Carbon Dioxide Extraction Method -- 6.4.6.4 Comparison Between Efficiencies of Combined Approaches -- 6.5 Biofuels Produced from Biomass -- 6.6 Conclusion -- References -- Chapter 7: Techno-Economic Analysis of Second-Generation Biofuel Technologies -- 7.1 Introduction -- 7.2 Techno-Economic Assessment of Biofuels. , 7.3 Different Second-Generation Biofuel Technologies Based on the Products Formed -- 7.4 Techno-Economic Assessment of Different Second-Generation Biofuel Technologies -- 7.4.1 Gasification -- 7.4.2 Different Types of Gasification -- 7.4.2.1 Fischer-Tropsch Synthesis -- 7.4.2.2 Mixed Alcohol Synthesis -- 7.4.2.3 Methanol to Gasoline -- 7.4.2.4 Syngas to Distillates (S2D) -- 7.4.2.5 Syngas Fermentation -- 7.4.3 Pyrolysis -- 7.5 Techno-Economic Assessment of Different Pre-treatment Technologies for Bioethanol Production -- 7.5.1 AFEX Pre-treatment Process -- 7.5.2 Dilute Acid Pre-treatment -- 7.5.3 Lime Pre-treatment -- 7.5.4 Hot Water Pre-treatment -- 7.5.5 Soaking in Aqueous Ammonia (SAA) -- 7.5.6 SO2 Using Steam Explosion -- 7.6 Techno-Economic Assessment of Different Technologies for Enzymatic Hydrolysis -- 7.6.1 Separate Hydrolysis and Fermentation (SHF) -- 7.6.2 Simultaneous Saccharification and Fermentation (SSF) -- 7.7 Software Used -- 7.7.1 ASPEN -- 7.7.2 SuperPro Designer -- 7.8 Conclusion and Future Perspectives -- References -- Chapter 8: Recent Advances in Metabolic Engineering and Synthetic Biology for Microbial Production of Isoprenoid-Based Biofuel... -- 8.1 Introduction -- 8.2 Hemiterpenoids -- 8.3 Monoterpenoids -- 8.4 Sesquiterpenoids -- 8.5 Conclusion -- References -- Chapter 9: Applications of Biosensors for Metabolic Engineering of Microorganisms and Its Impact on Biofuel Production -- 9.1 Introduction -- 9.2 An Overview of Biosensor-Based Strategies -- 9.3 Association of Biosensors and Biofuel Metabolic Engineering -- 9.4 Conclusion -- References -- Chapter 10: Recent Progress in CRISPR-Based Technology Applications for Biofuels Production -- 10.1 Introduction -- 10.2 An Overview of CRISPR Approaches -- 10.3 Association of CRISPR Approaches with Production of Biofuels -- 10.4 Conclusion -- References.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...