GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Singapore :Springer Singapore Pte. Limited,
    Keywords: Microbial fuel cells. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (296 pages)
    Edition: 1st ed.
    ISBN: 9789811571909
    Series Statement: Clean Energy Production Technologies Series
    DDC: 614.42
    Language: English
    Note: Intro -- Foreword -- Acknowledgments -- Contents -- About the Editors -- Chapter 1: An Introduction to Algal Biofuels -- 1.1 Introduction -- 1.2 Algal Species Involved in Biofuel Production -- 1.3 Types of Biofuels Produced from Microalgae -- 1.3.1 Biodiesel -- 1.3.2 Biobutanol -- 1.3.3 Biogasoline -- 1.3.4 Methane -- 1.3.5 Ethanol -- 1.4 Nutrients and Growth Inputs for Algal Growth -- 1.4.1 Bold´s Basal Medium (BBM) -- 1.4.2 Acidified Bold´s Basal Medium -- 1.4.3 BG11 (Blue-Green Medium) -- 1.4.4 Chu10 Medium -- 1.4.5 Wastewater as a Source of Nitrogen and Phosphate -- 1.4.6 Impact of Growth Conditions on Microalgal Biomass -- 1.5 Different Microalgae Cultivation Methods -- 1.5.1 Open System -- 1.5.2 Closed Systems or Indoor Photobioreactors (PBRs) -- 1.6 Concept of Biorefineries -- 1.6.1 Evaluation of the Biorefinery Processes -- 1.7 Advantage and Disadvantage of Biofuels -- 1.8 Policies Regarding Algal Biofuels Worldwide -- 1.8.1 Indian National Policy of Biofuel 2008 -- 1.8.2 Biofuel Policies in the United States -- 1.8.3 Biofuel Policies in Canada -- 1.9 Companies Involved in Algal Biofuel Production -- 1.10 Conclusion -- References -- Chapter 2: Paper Mill Sludge as a Potential Feedstock for Microbial Ethanol Production -- 2.1 Introduction -- 2.2 Bioethanol: A Sustainable Renewable Biofuel -- 2.3 Common Feedstocks Used for Bioethanol Production -- 2.3.1 Rice Straw -- 2.3.2 Sugarcane Bagasse -- 2.3.3 Sugarcane Tops -- 2.3.4 Waste Paper -- 2.3.5 Paper Mill Sludge -- 2.4 Pulp and Paper Mill Industry -- 2.5 Paper-Making Process -- 2.6 Preparation of Raw Materials and Processing -- 2.6.1 Pulping -- 2.6.2 Pulp Washing and Chemical Recovery -- 2.6.3 Bleaching -- 2.6.4 Paper Pressing and Paper Making -- 2.6.5 Paper Mill Sludge as a By-Product -- 2.7 Indian Scenario of Paper Mills -- 2.8 Paper Mill Sludge -- 2.8.1 Paper Mill Sludge Composition. , 2.8.2 Environmental Impacts of Paper Mill Sludge -- 2.8.3 Industrial Uses of Paper Mill Sludge -- 2.8.3.1 Brick Manufacture -- 2.8.3.2 Anaerobic Digestion -- 2.8.3.3 Cement Base -- 2.8.3.4 Soil Conditioner -- 2.8.3.5 Bioethanol -- 2.9 Paper Mill Sludge Resource for Bioethanol Production -- 2.10 Steps Involved in Bioethanol Production -- 2.11 Pre-treatment Techniques Employed in Paper Mill Sludge -- 2.11.1 Acid Pre-treatment -- 2.11.2 Alkaline Pre-treatment -- 2.11.3 Pulping-Based Pre-treatment -- 2.11.4 Ultrasound Pre-treatment -- 2.11.5 Solvent-Based Pre-treatment -- 2.12 Challenges Faced in Available Pre-treatment Techniques -- 2.12.1 Acid-Based Pre-treatment -- 2.12.2 Alkali-Based Pre-treatment -- 2.12.3 Solvent-Based Pre-treatment -- 2.13 Conclusions and Future Prospects -- References -- Chapter 3: Application of Hydrolytic Enzymes in Biorefinery and Its Future Prospects -- 3.1 Introduction -- 3.2 Biomass Structure -- 3.3 Application of Hydrolytic Enzymes in Generation of Bioethanol from Biomass -- 3.3.1 Cellulase -- 3.3.1.1 Cellulases: Application in Biorefinery -- 3.3.2 Hemicellulases -- 3.3.2.1 Hemicellulases: Application in Biorefinery -- 3.3.3 Ligninolytic Enzymes -- 3.3.3.1 Ligninolytic Enzymes: Application in the Biorefinery -- Biological Delignification -- 3.3.4 Lytic Polysaccharide Monooxygenases (LPMOs) -- 3.3.4.1 LPMOs: Application in Biorefinery -- 3.3.5 Amylases -- 3.3.5.1 Amylases: Application in Biorefinery -- 3.3.6 Pectinases -- 3.3.7 Lipases -- 3.3.7.1 Lipases: Application in Biorefinery -- 3.3.8 Proteases -- 3.3.8.1 Proteases: Application in Biorefinery -- 3.4 Strategies Employed for Improving the Hydrolytic Enzyme Yield and Efficiency -- 3.4.1 Immobilization of Enzyme -- 3.4.2 Screening of New and Robust Isolates from Extreme Habitats -- 3.4.3 Genetic Engineering. , 3.4.4 Metagenomics Approach for the Identification of the Potential Hydrolytic Enzyme -- 3.5 Integrated Biorefineries: Future of Biomass-Based Biorefinery -- 3.6 Summary -- References -- Chapter 4: Cultivation of Microalgae: Effects of Nutrient Focus on Biofuels -- 4.1 Introduction -- 4.2 Types of Microalgae -- 4.3 Components Present in Algae -- 4.4 Cultivation of Microalgae -- 4.5 Nutritional Requirements of Algae Growth -- 4.5.1 Carbon -- 4.5.2 Nitrogen -- 4.5.3 Phosphorus -- 4.5.4 Macro- and Micronutrients -- 4.5.5 Other Considerations -- 4.6 Bioreactors for Microalgae Cultivation -- 4.6.1 Closed Reactor Designing for Microalgae Cultivation -- 4.6.2 Classification of Photobioreactors (PBRs) -- 4.6.2.1 Light -- 4.6.2.2 Mixing -- 4.6.2.3 Water Consumption -- 4.6.2.4 CO2 Consumption -- 4.6.2.5 O2 Removal -- 4.6.2.6 Nutrient Supply -- 4.6.2.7 Temperature -- 4.6.2.8 pH -- 4.6.3 Other Considerations -- 4.7 Conclusions -- References -- Chapter 5: Microalgae as an Efficient Feedstock Biomass for Biofuel Production -- 5.1 Introduction -- 5.2 Biofuels from Microalgae Biomass -- 5.3 Harvesting -- 5.3.1 Sedimentation -- 5.3.2 Centrifugation -- 5.3.3 Flocculation -- 5.3.4 Coagulation -- 5.3.5 Floatation -- 5.3.6 Filtration -- 5.3.7 Electrophoresis -- 5.3.8 Ultrasonication -- 5.4 Lipid Extraction -- 5.4.1 Lipid Extraction by a Mechanical Process -- 5.4.2 Lipid Extraction by Chemicals and Solvents -- 5.4.2.1 Acid-Mediated Solvent System -- 5.4.2.2 Supercritical CO2 Fluid Technology -- 5.4.2.3 Ionic Liquids -- 5.4.3 Enzyme-Assisted Extraction -- 5.4.4 Surfactant-Assisted Extraction -- 5.4.5 Osmotic Pressure -- 5.5 Transesterification -- 5.5.1 Supercritical Conditions -- 5.6 Conclusions -- References -- Chapter 6: Microalgae Potential Feedstock for the Production of Biohydrogen and Bioactive Compounds -- 6.1 Introduction -- 6.2 Hydrogen Production. , 6.2.1 Photofermentation -- 6.2.2 Dark Fermentation -- 6.2.3 Hybrid System Using Photosynthetic and Dark Fermentative Bacteria -- 6.3 The Key Enzymes Associated with Hydrogen Production by Photosynthetic Bacteria -- 6.4 Medium Constituents and Cultivation Environments for Photosynthetic Bacteria -- 6.5 Various Parameters Influencing the Biohydrogen Production -- 6.6 Photobioreactor Design for Hydrogen Production -- 6.6.1 Solar Energy Excited Optical Fiber Photobioreactors -- 6.6.2 Photobioreactors with Immobilized Cells -- 6.6.3 The Plate-Type Photobioreactors -- 6.6.4 The LED Photobioreactors -- 6.7 Biomass Pretreatments Influence the H2 Production -- 6.8 Other Environmental Factor Influence on H2 Production -- 6.8.1 Effect of Thermophilic Conditions -- 6.8.2 Effect of Batch, Sequencing Batch, and Semicontinuous Reactions -- 6.8.3 Presence of Methanogenic Microorganisms -- 6.9 Bioactive Compounds -- 6.9.1 Introduction -- 6.9.2 Various Bioactive Compounds -- 6.9.3 Peptides and Polyunsaturated Fatty Acids -- 6.9.4 Anti-inflammatory Agents from Microalgae -- 6.9.5 Antibacterials -- 6.9.6 Antiviral and Anticancer Activities -- 6.10 Microalgae Preservation -- 6.10.1 Preservation by Lower Temperature -- 6.10.2 Preservation by Spray Drying -- 6.10.3 Preservation by Freeze Drying -- 6.10.4 Microencapsulation of Algae -- 6.11 Economic Concerns to Circular Economy -- 6.11.1 Future Prospective in Microalgal Research for Biofuels -- 6.11.2 Future Prospects on Bioactive Compounds -- 6.12 Conclusion -- References -- Chapter 7: Algal Biofuels: An Economic and Effective Alternative of Fossil Fuels -- 7.1 Introduction -- 7.2 Sources of Algal Biomass -- 7.3 Micro- and Macroalgae -- 7.3.1 Microalgae -- 7.3.1.1 Chlorella -- 7.3.1.2 Botryococcus braunii -- 7.3.1.3 Pleurochrysis carterae -- 7.3.1.4 Dunaliella salina -- 7.3.2 Macroalgae -- 7.3.2.1 Gracilaria chilensis. , 7.3.2.2 Sargassum angustifolium -- 7.3.2.3 Sea Lettuce: Ulva lactuca -- 7.4 Nutritional Requirements for the Algal Biomass Production -- 7.5 Energy Requirements for Life Cycle of Algal Biofuels -- 7.5.1 Carbon -- 7.5.2 Nitrogen -- 7.5.3 Phosphorus -- 7.5.4 Other Nutrients -- 7.6 Algal Cultivation Strategies -- 7.6.1 Open Pond Photobioreactor -- 7.6.2 Raceway Pond System -- 7.6.3 Closed-Photobioreactor -- 7.6.4 Hybrid Cultivation System -- 7.7 Harvesting and Drying of Algal Biomass -- 7.8 Biofuel Conversion -- 7.9 Improvement of Algal Biofuels Using Biotechnological Strategies -- 7.10 Economic Aspects of Algal Biofuels -- 7.11 Challenges and Future Perspective -- 7.12 Conclusion -- References -- Chapter 8: Nanocatalysts to Improve the Production of Microbial Fuel Applications -- 8.1 Introduction -- 8.2 Nanomaterial Classification -- 8.3 Nanoparticle Synthesis Techniques -- 8.3.1 Classification of Biofuels -- 8.3.2 Another Classification of Biofuel -- 8.3.2.1 Solid Biofuel -- 8.3.2.2 Liquid Biofuels -- 8.3.2.3 Gas Biofuels -- 8.4 Biofuel Production Methods -- 8.4.1 Gasification -- 8.4.2 Pyrolysis -- 8.4.3 Liquefaction -- 8.4.4 Enzymatic Hydrolysis -- 8.4.5 Transesterification -- 8.4.6 Anaerobic Digestion -- 8.5 Nanocatalysts in Biofuel Production -- 8.6 Nanoparticles in Biomass Pre-treatment -- 8.7 Use of Nanoparticles in the Production and Stability of Cellulase -- 8.8 Nanocatalyst for Biomass Gasification -- 8.9 Conclusion -- References -- Chapter 9: Microbial System: An Emerging Application in the Bioenergy Production -- 9.1 Introduction -- 9.2 Classification of Biofuels -- 9.2.1 First-Generation Biofuels -- 9.2.2 Second-Generation Biofuels -- 9.2.3 Third-Generation Biofuels -- 9.2.4 Fourth-Generation Biofuels -- 9.3 Sources of Biofuel Production -- 9.3.1 Agricultural Waste -- 9.3.2 Microalgae Biomass. , 9.4 Approaches for Microbial Strain Improvement.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...