GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-01-29
    Description: Publication date: Available online 19 January 2018 Source: Journal of Hydrology: Regional Studies Author(s): Alfonso Rivera, Lucila Candela Study region Global scale. Study focus This paper highlights the main outputs and outcomes of the Internationally Shared Aquifer Resources Management Initiative (ISARM, 2000–2015) of UNESCO on the global scale. We discuss the lessons learned, what is still relevant in ISARM, and what we consider irrelevant and why. We follow with discussion on the looming scenarios and the next steps following the awareness on transboundary aquifers (TBAs) as identified by ISARM. New insights for the region This analysis emphasizes the need for more scientific data, widespread education and training, and a more clearly defined role for governments to manage groundwater at the international level. It describes the links, approach and relevance of studies on TBAs to the UN Law of Transboundary Aquifers and on how they might fit regional strategies to assess and manage TBAs. The study discusses an important lesson learned on whether groundwater science can solve transboundary issues alone. It has become clear that science should interact with policy makers and social entities to have meaningful impacts on TBAs. Bringing together science, society, law, policy making, and harmonising information, would be important drivers and the best guidance for further assessments. ISARM can still make contributions, but it could be redesigned to support resolving TBAs issues which, in addition to science (hydrogeology), require considering social, political, economic and environmental factors. ISARM can increase its international dimension in the continents that still lag behind the assessment and shared management of TBAs, such as Asia and Africa.
    Print ISSN: 2214-5818
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Elsevier
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Elsevier
    In:  Journal of Environmental Management, 181 . pp. 8-15.
    Publication Date: 2019-02-01
    Description: Highlights: • Authors use inconsistent definitions of key terms like driver and pressure. • An imprecise wording could induce misunderstanding between science and policy. • We provide definitions of key terms compatible with the DPSIR approach. Abstract: In the marine sciences an increasing number of studies on environmental changes, their causes, and environmental assessments emerged in recent years. Often authors use non-uniform and inconsistent definitions of key terms like driver, threats, pressures etc. Although all of these studies clearly define causal dependencies between the interacting socio-economic and environmental systems in an understandable way, still an overall imprecise wording could induce misunderstanding at higher policy levels when it comes to integrated ecosystems assessments. Therefore we recommend using unified definitions for a better communication between science and management within national, regional and international environmental policies, for example the European Marine Strategy Framework Directive (MSFD). With this article we provide definitions compatible with the driver-pressure-state-impact-response (DPSIR) approach. Although most examples are MSFD related and thus have a marine focus the definitions are intended to be equally applicable for other systems and are usable world-wide. We suggest sticking to these definitions for an easy and simplified knowledge transfer from science to management, since DPSIR model is already accepted as a helpful tool for structuring and communicating ecosystem analyses.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-02-06
    Description: We have developed a global biogeographic classification of the mesopelagic zone to reflect the regional scales over which the ocean interior varies in terms of biodiversity and function. An integrated approach was necessary, as global gaps in information and variable sampling methods preclude strictly statistical approaches. A panel combining expertise in oceanography, geospatial mapping, and deep-sea biology convened to collate expert opinion on the distributional patterns of pelagic fauna relative to environmental proxies (temperature, salinity, and dissolved oxygen at mesopelagic depths). An iterative Delphi Method integrating additional biological and physical data was used to classify biogeographic ecoregions and to identify the location of ecoregion boundaries or inter-regions gradients. We define 33 global mesopelagic ecoregions. Of these, 20 are oceanic while 13 are ‘distant neritic.’ While each is driven by a complex of controlling factors, the putative primary driver of each ecoregion was identified. While work remains to be done to produce a comprehensive and robust mesopelagic biogeography (i.e., reflecting temporal variation), we believe that the classification set forth in this study will prove to be a useful and timely input to policy planning and management for conservation of deep-pelagic marine resources. In particular, it gives an indication of the spatial scale at which faunal communities are expected to be broadly similar in composition, and hence can inform application of ecosystem-based management approaches, marine spatial planning and the distribution and spacing of networks of representative protected areas
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Springer
    In:  EPIC3Building Bridges at the Science-Stakeholder Interface, Building Bridges at the Science-Stakeholder Interface, Springer, 133 p., pp. 73-78, ISBN: 978-3-319-75919-7
    Publication Date: 2019-08-15
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev , info:eu-repo/semantics/other
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-02-08
    Description: Highlights • Active hydrothermal vent ecosystems are extremely rare. • Vent ecosystems are recognized as vulnerable by international organizations. • Mineral resources at active vents would not contribute significantly to the global metal supply. • Effective networks that protect representative active vents cannot be ensured. • A prohibition on mining active vents is consistent with obligations for conservation. Abstract There is increasing interest in mining minerals on the seabed, including seafloor massive sulfide deposits that form at hydrothermal vents. The International Seabed Authority is currently drafting a Mining Code, including environmental regulations, for polymetallic sulfides and other mineral exploitation on the seabed in the area beyond national jurisdictions. This paper summarizes 1) the ecological vulnerability of active vent ecosystems and aspects of this vulnerability that remain subject to conjecture, 2) evidence for limited mineral resource opportunity at active vents, 3) non-extractive values of active vent ecosystems, 4) precedents and international obligations for protection of hydrothermal vents, and 5) obligations of the International Seabed Authority under the UN Convention on the Law of the Sea for protection of the marine environment from the impacts of mining. Heterogeneity of active vent ecosystems makes it extremely challenging to identify “representative” systems for any regional, area-based management approach to conservation. Protection of active vent ecosystems from mining impacts (direct and indirect) would set aside only a small fraction of the international seabed and its mineral resources, would contribute to international obligations for marine conservation, would have non-extractive benefits, and would be a precautionary approach.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-01-31
    Description: Rapid anthropogenic climate change is a major threat to ocean biodiversity, increasing the challenge for marine conservation. Strategic conservation planning, and more recently marine spatial planning (MSP) are among the most promising management tools to operationalize and enforce marine conservation. As yet, climate change is seldom incorporated into these plans, potentially curtailing the effectiveness of designated conservation areas under novel environmental conditions. Reliable assessment of current and future climate change threats requires the ability to map climate-driven eco-evolutionary changes and the identification of vulnerable and resistant populations. Here we explore the heretofore largely unrecognized value of information gained from physiological, ecological and evolutionary studies to MSP under ongoing climate change. For example, we explore how climate threats do not necessarily follow latitudinal gradients, such that both risk hotspots and refugia occur in mosaic distributions along species ranges - patterns that may be undetectable without knowledge of biological vulnerabilities at regional and local scales. Because co-occurring species can exhibit markedly different vulnerabilities to the same environmental changes, making ecological predictions requires, when possible, measuring the fundamental niches of key species (e.g., with the use of thermotolerance experiments). Forecasting also requires development of tools to identify the likelihood of community-level thresholds or tipping points (e.g., with the use of near-real world mesocosms), and assessment of the potential of populations for adaptation (e.g., with common garden experiments). Such research will facilitate better predictive models for the fate of populations, species, ecosystems and their functions. Ultimately, unfolding the complexity of the processes underlying climate change impacts will facilitate quantifying and reducing uncertainty in spatial planning decision processes and will enable the development of practical tools to validate adaptive conservation strategies.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-03-17
    Description: Forests worldwide are threatened by various environmental and anthropogenic hazards, especially tropical forests. Knowledge on the impacts of these hazards on forest structure and dynamics has been compiled in empirical studies. However, the results of these studies are often not sufficient for long-term projections and extrapolations to large spatial scales especially for unprecedented environmental conditions, which require both the identification and understanding of key underlying processes. Forest models bridge this gap by incorporating multiple ecological processes in a dynamic framework (i.e. including a realistic model structure) and addressing the complexity of forest ecosystems. Here, we describe the evolution of the individual-based and process-based forest gap model FORMIND and its application to tropical forests. At its core, the model includes physiological processes on tree level (photosynthesis, respiration, tree growth, mortality, regeneration, competition). During the past two decades, FORMIND has been used to address various scientific questions arising from different forest types by continuously extending the model structure. The model applications thus provided understanding in three main aspects: (1) the grouping of single tree species into plant functional types is a successful approach to reduce complexity in vegetation models, (2) structural realism was necessary to analyze impacts of natural and anthropogenic disturbances such as logging, fragmentation, or drought, and (3) complex ecological processes such as carbon fluxes in tropical forests – starting from the individual tree level up to the entire forest ecosystem – can be explored as a function of forest structure, species composition and disturbance regime. Overall, this review shows how the evolution of long-term modelling projects not only provides scientific understanding of forest ecosystems, but also provides benefits for ecological theory and empirical study design.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-01-31
    Description: The enactment of the Water Framework Directive (WFD) initiated scientific efforts to develop reliable methods for comparing prevailing lake conditions against reference (or nonimpaired) states, using the state of a set biological elements. Drawing a distinction between impaired and natural conditions can be a challenging exercise. Another important aspect is to ensure that water quality assessment is comparable among the different Member States. In this context, the present paper offers a constructive critique of the practices followed during the WFD implementation in Greece by pinpointing methodological weaknesses and knowledge gaps that undermine our ability to classify the ecological quality of Greek lakes. One of the pillars of WDF is a valid lake typology that sets ecological standards transcending geographic regions and national boundaries. The national typology of Greek lakes has failed to take into account essential components. WFD compliance assessments based on the descriptions of phytoplankton communities are oversimplified and as such should be revisited. Exclusion of most chroococcal species from the analysis of cyanobacteria biovolume in Greek lakes/reservoirs and most reservoirs in Spain, Portugal, and Cyprus is not consistent with the distribution of those taxa in lakes. Similarly, the total biovolume reference values and the indices used in classification schemes reflect misunderstandings of WFD core principles. This hampers the comparability of ecological status across Europe and leads to quality standards that are too relaxed to provide an efficient target for the protection of Greek/transboundary lakes such as the ancient Lake Megali Prespa.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-01-31
    Description: Human-induced climate change such as ocean warming and acidification, threatens marine ecosystems and associated fisheries. In the Western Baltic cod stock socio-ecological links are particularly important, with many relying on cod for their livelihoods. A series of recent experiments revealed that cod populations are negatively affected by climate change, but an ecological-economic assessment of the combined effects, and advice on optimal adaptive management are still missing. For Western Baltic cod, the increase in larval mortality due to ocean acidification has experimentally been quantified. Time-series analysis allows calculating the temperature effect on recruitment. Here, we include both processes in a stock-recruitment relationship, which is part of an ecological-economic optimization model. The goal was to quantify the effects of climate change on the triple bottom line (ecological, economic, social) of the Western Baltic cod fishery. Ocean warming has an overall negative effect on cod recruitment in the Baltic. Optimal management would react by lowering fishing mortality with increasing temperature, to create a buffer against climate change impacts. The negative effects cannot be fully compensated, but even at 3 °C warming above the 2014 level, a reduced but viable fishery would be possible. However, when accounting for combined effects of ocean warming and acidification, even optimal fisheries management cannot adapt to changes beyond a warming of +1.5° above the current level. Our results highlight the need for multi-factorial climate change research, in order to provide the best available, most realistic, and precautionary advice for conservation of exploited species as well as their connected socio-economic systems.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-02-08
    Description: Highlights: • A High Resolution-LOPC and a FlowCAM were evaluated for ballast water monitoring. • Both instruments underestimated density compared to microscopy. • Size measurements can be affected by organism orientation and complex morphology. • Both tools might be particularly useful when working with a known community. Abstract: Many commercial ships will soon begin to use treatment systems to manage their ballast water and reduce the global transfer of harmful aquatic organisms and pathogens in accordance with upcoming International Maritime Organization regulations. As a result, rapid and accurate automated methods will be needed to monitoring compliance of ships' ballast water. We examined two automated particle counters for monitoring organisms ≥ 50 μm in minimum dimension: a High Resolution Laser Optical Plankton Counter (HR-LOPC), and a Flow Cytometer with digital imaging Microscope (FlowCAM), in comparison to traditional (manual) microscopy considering plankton concentration, size frequency distributions and particle size measurements. The automated tools tended to underestimate particle concentration compared to standard microscopy, but gave similar results in terms of relative abundance of individual taxa. For most taxa, particle size measurements generated by FlowCAM ABD (Area Based Diameter) were more similar to microscope measurements than were those by FlowCAM ESD (Equivalent Spherical Diameter), though there was a mismatch in size estimates for some organisms between the FlowCAM ABD and microscope due to orientation and complex morphology. When a single problematic taxon is very abundant, the resulting size frequency distribution curves can become skewed, as was observed with Asterionella in this study. In particular, special consideration is needed when utilizing automated tools to analyse samples containing colonial species. Re-analysis of the size frequency distributions with the removal of Asterionella from FlowCAM and microscope data resulted in more similar curves across methods with FlowCAM ABD having the best fit compared to the microscope, although microscope concentration estimates were still significantly higher than estimates from the other methods. The results of our study indicate that both automated tools can generate frequency distributions of particles that might be particularly useful if correction factors can be developed for known differences in well-studied aquatic ecosystems.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...