GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-26
    Description: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Geochimica et Cosmochimica Acta 139 (2014): 47-71, doi:10.1016/j.gca.2014.04.024.
    Description: The East Scotia Ridge is an active back-arc spreading centre located to the west of the South Sandwich island arc in the Southern Ocean. Initial exploration of the ridge by deep-tow surveys provided the first evidence for hydrothermal activity in a back-arc setting outside of the western Pacific, and we returned in 2010 with a remotely operated vehicle to precisely locate and sample hydrothermal sites along ridge segments E2 and E9. Here we report the chemical and isotopic composition of high- and low-temperature vent fluids, and the mineralogy of associated high-temperature chimney material, for two sites at E2 (Dog’s Head and Sepia), and four sites at E9 (Black & White, Ivory Tower, Pagoda and Launch Pad). The chemistry of the fluids is highly variable between the ridge segments. Fluid temperatures were ∼350 °C at all vent sites except Black & White, which was significantly hotter (383 °C). End-member chloride concentrations in E2 fluids (532–536 mM) were close to background seawater (540 mM), whereas Cl in E9 fluids was much lower (98–220 mM) indicating that these fluids are affected by phase separation. Concentrations of the alkali elements (Na, Li, K and Cs) and the alkaline earth elements (Ca, Sr and Ba) co-vary with Cl, due to charge balance constraints. Similarly, concentrations of Mn and Zn are highest in the high Cl fluids but, by contrast, Fe/Cl ratios are higher in E9 fluids (3.8–8.1 × 10−3) than they are in E2 fluids (1.5–2.4 × 10−3) and fluids with lowest Cl have highest Cu. Although both ridge segments are magmatically inflated, there is no compelling evidence for input of magmatic gases to the vent fluids. Fluid δD values range from 0.2‰ to 1.5‰, pH values (3.02–3.42) are not especially low, and F concentrations (34.6–54.4 μM) are lower than bottom seawater (62.8 μM). The uppermost sections of conjugate chimney material from E2, and from Ivory Tower and Pagoda at E9, typically exhibit inner zones of massive chalcopyrite enclosed within an outer zone of disseminated sulphide, principally sphalerite and pyrite, in an anhydrite matrix. By contrast, the innermost part of the chimneys that currently vent fluids with lowest Cl (Black & White and Launch Pad), is dominated by anhydrite. By defining and assessing the controls on the chemical composition of these vent fluids, and associated mineralisation, this study provides new information for evaluating the significance of hydrothermal processes at back-arc basins for ocean chemistry and the formation of seafloor mineral deposits.
    Description: This work was funded by the Natural Environment Research Council consortium grant NE/D01249X/1. C.R.G. acknowledges further support from the National Science Foundation’s Office of Polar Programs grant ANT-0739675. N.R.B. acknowledges funding from the National Sciences and Engineering Research Council of Canada, Ontario Ministry of Research and Innovation, and the Academic Development Fund at Western University.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-04-23
    Description: Constraints on the variability of chromium (Cr) isotopic compositions in the modern ocean are required to validate the use of Cr isotopic signatures in ancient authigenic marine sediments for reconstructing past levels of atmospheric and ocean oxygenation. This study presents dissolved Cr concentrations (Cr-T, where Cr-T = Cr(VI) + Cr(III)) and Cr isotope data (delta Cr-53) for shelf, slope and open ocean waters within the oxygen minimum zone (OMZ) of the eastern sub-tropical Atlantic Ocean. Although dissolved oxygen concentrations were as low as 44-90 mu mol kg(-1) in the core of the OMZ, there was no evidence for removal of Cr(VI). Nonetheless, there was significant variability in seawater delta Cr-53, with values ranging from 1.08 to 1.72 parts per thousand. Shelf Cr-T concentrations were slightly lower (2.21 +/- 0.07 nmol kg(-1)) than in open ocean waters at the same water depth (between 0 and 160 m, 2.48 +/- 0.07 nmol kg(-1)). The shelf waters also had higher delta Cr-53 values (1.41 +/- 0.14 parts per thousand compared to 1.18 +/- 0.05 parts per thousand for open ocean waters shallower than 160 m). This is consistent with partial reduction of Cr(VI) to Cr(III), with subsequent removal of isotopically light Cr(III) onto biogenic particles. We also provide evidence for input of relatively isotopically heavy Cr from sediments on the shelf. Intermediate and deep water masses (AAIW and NADW) show a rather limited range of delta Cr-53 values (1.19 +/- 0.09 parts per thousand) and inputs of Cr from remineralisation of organic material or re-oxidation of Cr (III) appear to be minimal. Authigenic marine precipitates deposited in deep water in the open ocean therefore have the potential to faithfully record seawater delta Cr-53, whereas archives of seawater delta Cr-53 derived from shelf sediments must be interpreted with caution.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-12-07
    Description: Hydrocarbon-rich fluids expelled at mud volcanoes (MVs) may contribute significantly to the carbon budget of the oceans, but little is known about the long-term variation in fluid fluxes at MVs. The Darwin MV is one of more than 40 MVs located in the Gulf of Cadiz, but it is unique in that its summit is covered by a thick carbonate crust that has the potential to provide a temporal record of seepage activity. In order to test this idea, we have conducted petrographic, chemical and isotopic analyses of the carbonate crust. In addition a 1-D transport-reaction model was applied to pore fluid data to assess fluid flow and carbonate precipitation at present. The carbonate crusts mainly comprise of aragonite, with a chaotic fabric exhibiting different generations of cementation and brecciation. The crusts consist of bioclasts and lithoclasts (peloids, intraclasts and extraclasts) immersed in a micrite matrix and in a variety of cement types (microsparite, botryoidal, isopachous acicular, radial and splayed fibrous). The carbonates are moderately depleted in 13C (δ13C = − 8.1 to − 27.9‰) as are the pore fluids (δ13C = − 19.1 to − 28.7‰), which suggests that their carbon originated from the oxidation of methane and higher hydrocarbons, like the gases that seep from the MV today. The carbonate δ18O values are as high as 5.1‰, and it is most likely that the crusts formed from 18O-rich fluids derived from dehydration of clay minerals at depth. Pore fluid modelling results indicate that the Darwin MV is currently in a nearly dormant phase (seepage velocities are 〈 0.09 cm yr− 1). Thus, the thick carbonate crust must have formed during past episodes of high fluid flow, alternating with phases of mud extrusion and uplift. Highlights ► Results of pore fluid modelling indicate low seepage activity at localised sites. ► Pore fluids are supersaturated with respect to hydrocarbons of thermogenic origin. ► AOM supports vent fauna and results in the formation of authigenic carbonates. ► The carbonate crust has a brecciated appearance and mainly consists of aragonite. ► The crust formation seems to be regulated by changes in fluid and mudflow activity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-06-19
    Description: The East Scotia subduction zone, located in the Atlantic sector of the Southern Ocean, hosts a number of hydrothermal sites in both back-arc and island-arc settings. High temperature (〉348 °C) ‘black smoker’ vents have been sampled at three locations along segments E2 and E9 of the East Scotia back-arc spreading ridge, as well as ‘white smoker’ (〈212 °C) and diffuse (〈28 °C) hydrothermal fluids from within the caldera of the Kemp submarine volcano. The composition of the endmember fluids (Mg = 0 mmol/kg) is markedly different, with pH ranging from 〈1 to 3.4, [Cl−] from ∼90 to 536 mM, [H2S] from 6.7 to ∼200 mM and [F−] from 35 to ∼1000 μM. All of the vent sites are basalt- to basaltic andesite-hosted, providing an ideal opportunity for investigating the geochemical controls on rare earth element (REE) behaviour. Endmember hydrothermal fluids from E2 and E9 have total REE concentrations ranging from 7.3 to 123 nmol/kg, and chondrite-normalised distribution patterns are either light REE-enriched (LaCN/YbCN = 12.8–30.0) with a positive europium anomaly (EuCN/Eu∗CN = 3.45–59.5), or mid REE-enriched (LaCN/NdCN = 0.61) with a negative Eu anomaly (EuCN/Eu∗CN = 0.59). By contrast, fluids from the Kemp Caldera have almost flat REE patterns (LaCN/YbCN = 2.1–2.2; EuCN/Eu∗CN = 1.2–2.2). We demonstrate that the REE geochemistry of fluids from the East Scotia back-arc spreading ridge is variably influenced by ion exchange with host minerals, phase separation, competitive complexation with ligands, and anhydrite deposition, whereas fluids from the Kemp submarine volcano are also affected by the injection of magmatic volatiles which enhances the solubility of all the REEs. We also show that the REE patterns of anhydrite deposits from Kemp differ from those of the present-day fluids, potentially providing critical information about the nature of hydrothermal activity in the past, where access to hydrothermal fluids is precluded.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-02-01
    Description: Highlights • Records of seawater εNdεNd are highly unradiogenic across the OMT at Ceara Rise. • Strong influence of Amazon particulate Nd on seawater εNdεNd at Ceara Rise. • Point-sourced riverine Nd influences seawater far from continental shelf. • Regional sedimentary Nd flux can be confused with water mass mixing signals. Abstract Dissolved and particulate neodymium (Nd) are mainly supplied to the oceans via rivers, dust, and release from marine sediments along continental margins. This process, together with the short oceanic residence time of Nd, gives rise to pronounced spatial gradients in oceanic 143Nd/144Nd ratios (εNdεNd). However, we do not yet have a good understanding of the extent to which the influence of riverine point-source Nd supply can be distinguished from changes in mixing between different water masses in the marine geological record. This gap in knowledge is important to fill because there is growing awareness that major global climate transitions may be associated not only with changes in large-scale ocean water mass mixing, but also with important changes in continental hydroclimate and weathering. Here we present εNdεNd data for fossilised fish teeth, planktonic foraminifera, and the Fe–Mn oxyhydroxide and detrital fractions of sediments recovered from Ocean Drilling Project (ODP) Site 926 on Ceara Rise, situated approximately 800 km from the mouth of the River Amazon. Our records span the Mi-1 glaciation event during the Oligocene–Miocene transition (OMT; ∼23 Ma). We compare our εNdεNd records with data for ambient deep Atlantic northern and southern component waters to assess the influence of particulate input from the Amazon River on Nd in ancient deep waters at this site. εNdεNd values for all of our fish teeth, foraminifera, and Fe–Mn oxyhydroxide samples are extremely unradiogenic (εNd≈−15εNd≈−15); much lower than the εNdεNd for deep waters of modern or Oligocene–Miocene age from the North Atlantic (εNd≈−10εNd≈−10) and South Atlantic (εNd≈−8εNd≈−8). This finding suggests that partial dissolution of detrital particulate material from the Amazon (εNd≈−18εNd≈−18) strongly influences the εNdεNd values of deep waters at Ceara Rise across the OMT. We conclude that terrestrially derived inputs of Nd can affect εNdεNd values of deep water many hundreds of kilometres from source. Our results both underscore the need for care in reconstructing changes in large-scale oceanic water-mass mixing using sites proximal to major rivers, and highlight the potential of these marine archives for tracing changes in continental hydroclimate and weathering.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-02-06
    Description: Offshore western Svalbard plumes of gas bubbles rise from the seafloor at the landward limit of the gas hydrate stability zone (LLGHSZ; ∼400 m water depth). It is hypothesized that this methane may, in part, come from dissociation of gas hydrate in the underlying sediments in response to recent warming of ocean bottom waters. To evaluate the potential role of gas hydrate in the supply of methane to the shallow subsurface sediments, and the role of anaerobic oxidation in regulating methane fluxes across the sediment–seawater interface, we have characterised the chemical and isotopic compositions of the gases and sediment pore waters. The molecular and isotopic signatures of gas in the bubble plumes (C1/C2+ = 1 × 104; δ13C-CH4 = −55 to −51‰; δD-CH4 = −187 to −184‰) are similar to gas hydrate recovered from within sediments ∼30 km away from the LLGHSZ. Modelling of pore water sulphate profiles indicates that subsurface methane fluxes are largely at steady state in the vicinity of the LLGHSZ, providing no evidence for any recent change in methane supply due to gas hydrate dissociation. However, at greater water depths, within the GHSZ, there is some evidence that the supply of methane to the shallow sediments has recently increased, which is consistent with downslope retreat of the GHSZ due to bottom water warming although other explanations are possible. We estimate that the upward diffusive methane flux into shallow subsurface sediments close to the LLGHSZ is 30,550 mmol m−2 yr−1, but it is 〈20 mmol m−2 yr−1 in sediments further away from the seafloor bubble plumes. While anaerobic oxidation within the sediments prevents significant transport of dissolved methane into ocean bottom waters this amounts to less than 10% of the total methane flux (dissolved + gas) into the shallow subsurface sediments, most of which escapes AOM as it is transported in the gas phase.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-09-27
    Description: Submarine mud volcanism is an important pathway for transfer of deep-sourced fluids enriched in hydrocarbons and other elements into the ocean. Numerous mud volcanoes (MVs) have been discovered along oceanic plate margins, and integrated elemental fluxes are potentially significant for oceanic chemical budgets. Here, we present the first detailed study of the spatial variation in fluid and chemical fluxes at the Carlos Ribeiro MV in the Gulf of Cadiz. To this end, we combine analyses of the chemical composition of pore fluids with a 1-D transport-reaction model to quantify fluid fluxes, and fluxes of boron, lithium and methane, across the sediment–seawater interface. The pore fluids are significantly depleted in chloride, but enriched in lithium, boron and hydrocarbons, relative to seawater. Pore water profiles of sulphate, hydrogen sulphide and total alkalinity indicate that anaerobic oxidation of methane occurs at 34–180 cm depth below seafloor. Clay mineral dehydration, and in particular the transformation of smectite to illite, produces pore fluids that are depleted in chloride and potassium. Profiles of boron, lithium and potassium are closely related, which suggests that lithium and boron are released from the sediments during this transformation. Pore fluids are expelled into the water column by advection; fluid flow velocities are 4 cm yr−1 at the apex of the MV but they rapidly decrease to 0.4 cm yr−1 at the periphery. The associated fluxes of boron, lithium and methane vary between 7–301, 0.5–6 and 0–806 mmol m−2 yr−1, respectively. We demonstrate that fluxes of Li and B due to mud volcanism may be important on a global scale, however, release of methane into the overlying water column is suppressed by microbial methanotrophy.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-09-27
    Description: Fossil corals are unique archives of past seasonal climate variability, providing vital information about seasonal climate phenomena such as ENSO and monsoons. However, submarine diagenetic processes can potentially obscure the original climate signals and lead to false interpretations. Here we demonstrate the potential of laser ablation ICP-MS to rapidly detect secondary aragonite precipitates in fossil Porites colonies recovered by Integrated Ocean Drilling Program (IODP) Expedition 310 from submerged deglacial reefs off Tahiti. High resolution (100 μm) measurements of coralline B/Ca, Mg/Ca, S/Ca, and U/Ca ratios are used to distinguish areas of pristine skeleton from those afflicted with secondary aragonite. Measurements of coralline Sr/Ca, U/Ca and oxygen isotope ratios, from areas identified as pristine, reveal that the seasonal range of sea surface temperature in the tropical south Pacific during the last deglaciation (14.7 and 11 ka) was similar to that of today.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-07-06
    Description: Highlights • Field-scale sub-seabed release experiment to simulate leakage from CO2 reservoir. • CO2 induces pronounced changes in pore water geochemistry. • Dissolution of minerals as a result of increased dissolved CO2 concentrations. • Changes in pore water geochemistry are transient and spatially restricted. • Levels of released metals are low and likely to have minor impact on benthic ecosystems. Abstract The potential for leakage of CO2 from a storage reservoir into the overlying marine sediments and into the water column and the impacts on benthic ecosystems are major challenges associated with carbon capture and storage (CCS) in subseafloor reservoirs. We have conducted a field-scale controlled CO2 release experiment in shallow, unconsolidated marine sediments, and documented the changes to the chemical composition of the sediments, their pore waters and overlying water column before, during and up to 1 year after the 37-day long CO2 release. Increased levels of dissolved inorganic carbon (DIC) were detected in the pore waters close to the sediment-seawater interface in sediments sampled closest to the subsurface injection point within 5 weeks of the start of the CO2 release. Highest DIC concentrations (28.8 mmol L−1, compared to background levels of 2.4 mmol L−1) were observed 6 days after the injection had stopped. The high DIC pore waters have high total alkalinity, and low δ13CDIC values (−20‰, compared to a background value of −2‰), due to the dissolution of the injected CO2 (δ13C = −26.6‰). The high DIC pore waters have enhanced concentrations of metals (including Ca, Fe, Mn) and dissolved silicon, relative to non-DIC enriched pore waters, indicating that dissolution of injected CO2 promotes dissolution of carbonate and silicate minerals. However, in this experiment, the pore water metal concentrations did not exceed levels considered to be harmful to the environment. The spatial extent of the impact of the injected CO2 in the sediments and pore waters was restricted to an area within 25 m of the injection point, and no impact was observed in the overlying water column. Concentrations of all pore water constituents returned to background values within 18 days after the CO2 injection was stopped.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-07-03
    Description: Highlights • Development of a marine monitoring system suitable for operational CCS is achievable. • Monitoring should be hierarchical, starting with anomaly detection. • Comprehensive baselines are required to support monitoring. Abstract The QICS controlled release experiment demonstrates that leaks of carbon dioxide (CO2) gas can be detected by monitoring acoustic, geochemical and biological parameters within a given marine system. However the natural complexity and variability of marine system responses to (artificial) leakage strongly suggests that there are no absolute indicators of leakage or impact that can unequivocally and universally be used for all potential future storage sites. We suggest a multivariate, hierarchical approach to monitoring, escalating from anomaly detection to attribution, quantification and then impact assessment, as required. Given the spatial heterogeneity of many marine ecosystems it is essential that environmental monitoring programmes are supported by a temporally (tidal, seasonal and annual) and spatially resolved baseline of data from which changes can be accurately identified. In this paper we outline and discuss the options for monitoring methodologies and identify the components of an appropriate baseline survey.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...