GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
  • 1
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The last interglacial period (about 125,000 years ago) is thought to have been at least as warm as the present climate. Owing to changes in the Earth's orbit around the Sun, it is thought that insolation in the Northern Hemisphere varied more strongly than today on seasonal timescales, ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-12-07
    Description: The present study investigates the influence of environmental (temperature, salinity) and biological (growth rate, inter-generic variations) parameters on calcium isotope fractionation (δ44/40Ca) in scleractinian coral skeleton to better constrain this record. Previous studies focused on the δ44/40Ca record in different marine organisms to reconstruct seawater composition or temperature, but only few studies investigated corals. This study presents measurements performed on modern corals from natural environments (from the Maldives for modern and from Tahiti for fossil corals) as well as from laboratory cultures (Centre Scientifique de Monaco). Measurements on Porites sp., Acropora sp., Montipora verrucosa and Stylophora pistillata allow constraining inter-generic variability. Our results show that the fractionation of δ44/40Ca ranges from 0.6 to 0.1‰, independent of the genus or the environmental conditions. No significant relationship between the rate of calcification and δ44/40Ca was found. The weak temperature dependence reported in earlier studies is most probably not the only parameter that is responsible for the fractionation. Indeed, sub-seasonal temperature variations reconstructed by δ18O and Sr/Ca ratio using a multi-proxy approach, are not mirrored in the coral's δ44/40Ca variations. The intergeneric variability and intrageneric variability among the studied samples are weak except for S. pistillata, which shows calcium isotopic values increasing with salinity. The variability between samples cultured at a salinity of 40 is higher than those cultured at a salinity of 36 for this species. The present study reveals a strong biological control of the skeletal calcium isotope composition by the polyp and a weak influence of environmental factors, specifically temperature and salinity (except for S. pistillata). Vital effects have to be investigated in situ to better constrain their influence on the calcium isotopic signal. If vital effects could be extracted from the isotopic signal, the calcium isotopic composition of coral skeletons could provide reliable information on the calcium composition and budget in ocean. Highlights ► Corals cultured in aquaria or from natural environment show the same Ca isotopic composition. ► δ44/40Ca of coral skeleton is independent of depositional setting environment. ► Strong influence of vital effects on coral skeleton δ44/40Ca composition and calcification mechanisms
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-05-10
    Description: Previous studies have demonstrated the potential for the Li content of coral aragonite to record information about environmental conditions, but no detailed study of tropical corals exists. Here we present the Li and Mg to Ca ratios at a bimonthly to monthly resolution over 25 years in two modern Porites corals, the genus most often used for paleoclimate reconstructions in the tropical Indo-Pacific. A strong relationship exists between coral Li/Ca and locally measured SST, indicating that coral Li/Ca can be used to reconstruct tropical SST variations. However, Li/Ca ratios of the skeleton deposited during 1979-1980 do not track local SST well and are anomalously high in places. The Mg/Ca ratios of this interval are also anomalously high, and we suggest Li/Ca can be used to reconstruct tropical SST only when Mg/Ca data are used to carefully screen for relatively rare biological effects. Mg/Li or Li/Mg ratios provide little advantage over Li/Ca ratios, except that the slope of the Li/Mg temperature relationship is more similar between the two corals. The Mg/Li temperature relationship for the coral that experienced a large temperature range is similar to that found for cold water corals and aragonitic benthic foraminifera in previous studies. The comparison with data from other biogenic aragonites suggests the relationship between Li/Mg and water temperature can be described by a single exponential relationship. Despite this hint at an overarching control, it is clear that biological processes strongly influence coral Li/Ca, and more calibration work is required before widely applying the proxy
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-02-23
    Description: The early last glacial termination was characterized by intense North Atlantic cooling and weak overturning circulation. This interval between ~18,000 and 14,600 years ago, known as Heinrich Stadial 1, was accompanied by a disruption of global climate and has been suggested as a key factor for the termination. However, the response of interannual climate variability in the tropical Pacific (El Niño-Southern Oscillation) to Heinrich Stadial 1 is poorly understood. Here we use Sr/Ca in a fossil Tahiti coral to reconstruct tropical South Pacific sea surface temperature around 15,000 years ago at monthly resolution. Unlike today, interannual South Pacific sea surface temperature variability at typical El Niño-Southern Oscillation periods was pronounced at Tahiti. Our results indicate that the El Niño-Southern Oscillation was active during Heinrich Stadial 1, consistent with climate model simulations of enhanced El Niño-Southern Oscillation variability at that time. Furthermore, a greater El Niño-Southern Oscillation influence in the South Pacific during Heinrich Stadial 1 is suggested, resulting from a southward expansion or shift of El Niño-Southern Oscillation sea surface temperature anomalies.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-09-27
    Description: Fossil corals are unique archives of past seasonal climate variability, providing vital information about seasonal climate phenomena such as ENSO and monsoons. However, submarine diagenetic processes can potentially obscure the original climate signals and lead to false interpretations. Here we demonstrate the potential of laser ablation ICP-MS to rapidly detect secondary aragonite precipitates in fossil Porites colonies recovered by Integrated Ocean Drilling Program (IODP) Expedition 310 from submerged deglacial reefs off Tahiti. High resolution (100 μm) measurements of coralline B/Ca, Mg/Ca, S/Ca, and U/Ca ratios are used to distinguish areas of pristine skeleton from those afflicted with secondary aragonite. Measurements of coralline Sr/Ca, U/Ca and oxygen isotope ratios, from areas identified as pristine, reveal that the seasonal range of sea surface temperature in the tropical south Pacific during the last deglaciation (14.7 and 11 ka) was similar to that of today.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Springer
    In:  In: The Climate in Historical Times. , ed. by Fischer, H. Springer, Berlin, pp. 91-108. ISBN 978-3-662-10313-5
    Publication Date: 2019-04-29
    Description: Instrumental climate records are too short to resolve the full range of decadal- to multidecadal-scale natural climate variability. Massive annually banded corals from the tropical and subtropical oceans provide a paleoclimatic archive with a clear seasonal resolution, documenting past variations in water temperature, hydrologic balance, and ocean circulation. Recent coral-based paleoclimatic research has focused mainly on the tropics, providing important implications on the past variability of the El Niño—Southern Oscillation phenomenon and decadal tropical climate variability. New records from some of the rare subtropical/mid-latitude locations of coral growth were shown to reflect aspects of dominant modes of Northern Hemisphere climate variability, e.g., the North Atlantic Oscillation/Arctic Oscillation. These natural climatic modes have important socio-economic impacts owing to their large-scale modulation of droughts, floods, storms, snowfall, and fish stocks. Coral records from key locations provide the opportunity to assess recent shifts of these modes with respect to the natural climate variability of the pre-instrumental period. Providing a better understanding of their dynamics, coral records, together with records derived from other paleoclimatic archives, are essential for a better predictability of future climate.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-05-10
    Description: Proxy reconstructions of tropical Atlantic sea surface temperature (SST) that extend beyond the period of instrumental observations have primarily focused on centennial to millennial variability rather than on seasonal to multidecadal variability. Here we present monthly-resolved records of Sr/Ca (a proxy of SST) from fossil annually-banded Diploria strigosa corals from Bonaire (southern Caribbean Sea). The individual corals provide time-windows of up to 68 years length, and the total number of 295 years of record allows for assessing the natural range of seasonal to multidecadal SST variability in the western tropical Atlantic during snapshots of the mid- to late Holocene. Comparable to modern climate, the coral Sr/Ca records reveal that mid- to late Holocene SST was characterised by clear seasonal cycles, persistent quasi-biennial and prominent interannual as well as inter- to multidecadal-scale variability. However, the magnitude of SST variations on these timescales has varied over the last 6.2 ka. The coral records show increased seasonality during the mid-Holocene consistent with climate model simulations indicating that southern Caribbean SST seasonality is induced by insolation changes on orbital timescales, whereas internal dynamics of the climate system play an important role on shorter timescales. Interannual SST variability is linked to ocean–atmosphere interactions of Atlantic and Pacific origin. Pronounced interannual variability in the western tropical Atlantic is indicated by a 2.35 ka coral, possibly related to a strengthening of the variability of the El Niño/Southern Oscillation throughout the Holocene. Prominent inter- to multidecadal SST variability is evident in the coral records and slightly more pronounced in the mid-Holocene. We finally argue that our coral data provide a target for studying Holocene climate variability on seasonal and interannual to multidecadal timescales, when using further numerical models and high-resolution proxy data.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-02-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-02-07
    Description: We present a monthly resolved stable Ba isotope record (δ138Bacoral) of a young fossil coral (Porites) from the eastern side of the Andaman Islands (NE Indian Ocean), which grew prior to the 19th century. This δ138Bacoral record complements 19-years of monthly resolved Ba/Cacoral, Sr/Cacoral, U/Cacoral, δ18Ocoral and δ13Ccoral data from the same colony that can serve as a baseline of environmental variability before the industrialised era. The δ138Bacoral record exhibits small but significant seasonal variability ranging from 0.16 to 0.27 ± 0.03‰ over two continuous annual cycles. The δ138Bacoral signature is generally low during the South Asian summer monsoon (SAM, June-September) and post-SAM seasons (October-January), which are characterised by high Ba/Cacoral and more depleted δ18OSW values. We suggest that Ba desorption from suspended fluvial sediments followed by lateral advection are the main causes of the low δ138Bacoral and elevated Ba/Cacoral values during the SAM and post-SAM. However, this promising Ba proxy behaviour is interrupted by pronounced spikes of low δ138Bacoral and high Ba/Cacoral signatures observed during the pre-SAM season (February-May) throughout the 19-year record. Possible explanations for these spikes observed during dry seasons are (1) Ba enrichment associated with decreased mixed layer depth or (2) Ba release from sediments trapped by local fringing mangroves. Surface seawater from the coral site sampled over an annual cycle exhibits a wide range of dissolved δ138BaSW and [Ba]SW values, with significantly lowered δ138BaSW of 0.29 ± 0.04‰ and high [Ba]SW of 66.03 nmol/kg during the SAM, which is broadly consistent with the coral skeletal signals. Our results establish a clear link between monsoon-driven freshening events and Ba isotope variability of surface waters and assess the utility of coral skeletal Ba isotopes to trace riverine inputs into tropical coastal oceans.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-02-07
    Description: The carbon isotope 13C is commonly used to attribute the last deglacial atmospheric CO2 rise to various processes. Here we show that the growth of the world's largest reef system, the Great Barrier Reef (GBR), is marked by a pronounced decrease in δ13C in absolutely dated fossil coral skeletons between 12.8 and 11.7 ka, which coincides with a prominent minimum in atmospheric δ13CO2 and the Younger Dryas. The event follows the flooding of a large shelf platform and initiation of an extensive barrier reef system at 13 ka. Carbon cycle simulations show the coral δ13C decrease was mainly caused by the combination of isotopic fractionation during reef carbonate production and the decomposition of organic land carbon on the newly flooded shallow-water platform. The impacts of these processes on atmospheric CO2 and δ13CO2, however, are marginal. Thus, the GBR was not contributing to the last deglacial δ13CO2 minimum at ∼12.4 ka.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...