GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-09-23
    Description: Highlights: • Activity of Arctic bacterioplankton in summer is regulated by concentration and composition of organic matter. • Bacterial production in Fram Strait is significantly related to concentrations of total amino acids. • Bacterioplankton in Polar Water show enhanced enzymatic hydrolysis of combined carbohydrates compared to Atlantic Water. Abstract The bacterial turnover of organic matter was investigated in Fram Strait at 79°N. Both Atlantic Water (AW) inflow and exported Polar Water (PW) were sampled along a transect from Spitsbergen to the eastern Greenland shelf during a late successional stage of the main annual phytoplankton bloom in summer. AW showed higher concentrations of amino acids than PW, while organic matter in PW was enriched in combined carbohydrates. Bacterial growth and degradation activity in AW and PW were related to compositional differences of organic matter. Bacterial production and leucine-aminopeptidase along the transect were significantly correlated with concentrations of amino acids. Activity ratios between the extracellular enzymes β-glucosidase and leucine-aminopeptidase indicate the hydrolysis potential for polysaccharides relative to proteins. Along the transect, these ratios showed a higher hydrolysis potential for polysaccharides relative to proteins in PW than in AW, thus reflecting the differences in organic matter composition between the water masses. Q10 values for bacterial production ranged from 2.4 (± 0.8) to 6.0 (± 6.8), while those for extracellular enzymes showed a broader range of 1.5 (± 0.5) to 23.3 (± 11.8). Our results show that in addition to low seawater temperature also organic matter availability contributes to the regulation of bacterial growth and enzymatic activity in the Arctic Ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-23
    Description: Highlights: • Elemental C:N:P variations of organic matter are simulated at monitoring site BY15. • No N2 fixation needed to explain observed PO4PO4 and pCO2pCO2 levels after spring bloom. • Model features relevance of DOP production and remineralization for N2 fixation. • Model estimates of annual N2 fixation are View the MathML source297±24mmolNm-2a-1. • Model estimates of annual total production are View the MathML source14.16±0.71molCm-2a-1. Abstract: For most marine ecosystems the growth of diazotrophic cyanobacteria and the associated amount of nitrogen fixation are regulated by the availability of phosphorus. The intensity of summer blooms of nitrogen (N2) fixing algae in the Baltic Sea is assumed to be determinable from a surplus of dissolved inorganic phosphorus (DIP) that remains after the spring bloom has ended. But this surplus DIP concentration is observed to continuously decrease at times when no appreciable nitrogen fixation is measured. This peculiarity is currently discussed and has afforded different model interpretations for the Baltic Sea. In our study we propose a dynamical model solution that explains these observations with variations of the elemental carbon-to-nitrogen-to-phosphorus (C:N:P) ratio during distinct periods of organic matter production and remineralization. The biogeochemical model resolves seasonal C, N and P fluxes with depth at the Baltic Sea monitoring site BY15, based on three assumptions: (1) DIP is utilized by algae though not needed for immediate growth, (2) the uptake of dissolved inorganic nitrogen (DIN) is hampered when the algae׳s phosphorus (P) quota is low, and (3) carbon assimilation continues at times of nutrient depletion. Model results describe observed temporal variations of DIN, DIP and chlorophyll-a concentrations along with partial pressure of carbon dioxide (pCO2)(pCO2). In contrast to other model studies, our solution does not require N2 fixation to occur shortly after the spring bloom to explain DIP drawdown and pCO2pCO2 levels. Model estimates of annual N2 fixation are View the MathML source297±24mmolNm-2a-1. Estimates of total production are View the MathML source14200±700mmolCm-2a-1, View the MathML source1400±70mmolNm-2a-1, and View the MathML source114±5mmolPm-2a-1 for the upper 50 m. The models C, N and P fluxes disclose preferential remineralization of P and of organic N that was introduced via N2 fixation. Our results are in support of the idea that P uptake by phytoplankton during the spring bloom contributes to the consecutive availability of labile dissolved organic phosphorus (LDOP). The LDOP is retained within upper layers and its remineralization affects algal growth in summer, during periods of noticeable N2 fixation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-09-23
    Description: Highlights: • Coagulation efficiency of the coccolithophorid Emiliania huxleyi was determined with Couette flow devices. • Higher coagulation efficiencies of cells were observed at lower growth rates. • Coagulation efficiency increases with the extracellular polysaccharides fraction. Abstract: Coagulation of small particles results in the formation of larger aggregates that play an important role in the biological pump, moving carbon and other elements from the surface to the deep ocean and seafloor. In this study, we estimated the efficiency of particle coagulation of the coccolithophore Emiliania huxleyi at different growth rates using Couette flow devices at a natural shear rate. To determine the impacts of chemical and biological factors involved in aggregate formation, we investigated how variance in organic matter composition, and in particular the presence of extracellular polysaccharides (EP), including transparent exopolymer particles (TEP) and acidic polysaccharides attached to the coccolith surface, affect the coagulation efficiency (α). When E. huxleyi was grown in a chemostat at different growth rates, coagulation efficiency increased from ~ 0.40 to 1 as cell growth rates declined and nutrients became more limited. With declining growth rate the concentration of EP and the number of detached coccoliths increased. Overall a close correlation between coagulation efficiency of E. huxleyi and the ratio of EP to total particle volume was observed. The minimum value of α of ~ 0.4 determined during this study is higher than estimates published for other phytoplankton cells, and may be related to the presence of EP attached to coccoliths. Based on our findings, we suggest that E. huxleyi is more prone to form aggregates, particularly during the decline of blooms, when increased production of EP and enhanced shedding of coccoliths coincide. This may be one explanation for why blooms of E. huxleyi play an important role in the biological carbon pump, efficiently enhancing the vertical flux of particles, as has been suggested by sediment trap studies.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-09-23
    Description: A method is described to simultaneously determine the neutral, amino, and acidic sugar content of combined carbohydrates in high molecular weight (HMW, 〉 1 kDa) dissolved organic matter and in particles from seawater samples. Monomeric sugars are determined after acid hydrolysis and neutralization through acid evaporation using high performance anion exchange chromatography (HPAEC) coupled with pulsed amperometric detection (PAD). The separation of sugars during chromatography is achieved in two steps, an isocratic elution (18 mM NaOH) followed by a gradient course of two mobile eluent phases (NaOH and CH3COONa). HPAEC-PAD has previously been applied to measure neutral and amino sugars in marine samples. Since salt anions interfere with the measurement, some of the earlier studies used ion exchange resins for seawater desalting. Thereby, variable losses of neutral and amino sugars, and the complete removal of acidic sugars have been reported. Here, we show that desalting by membrane dialysis (1 kDa) is an efficient alternative to ion exchange resins and yields recoveries of 〉 90% for HMW carbohydrates. We conducted several tests to determine the accuracy and reproducibility of the method. Sugar concentrations determined with our protocol were compared to results obtained with the colorimetric TPTZ-method, and with earlier HPAEC-PAD protocols using cation/ anion exchange resins. Applications of our protocol to field samples indicated that acidic sugars can comprise a substantial fraction (30-50%) of HMW dissolved carbohydrates in seawater. The simultaneous analysis of the three classes of sugars appears promising to detect a larger fraction of marine combined carbohydrates, and thus to improve our understanding of organic matter cycling in the ocean.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Elsevier
    In:  Deep Sea Research Part I: Oceanographic Research Papers, 51 (1). pp. 83-92.
    Publication Date: 2016-11-01
    Description: The abundance of transparent exopolymer particles (TEP) was determined in the northeast Atlantic Ocean (40–55°N, ∼20°W) during several cruises from June to November 1996. An accumulation of TEP in the water column was observed at bloom and post-bloom sites along a 20°W transect in June/July (maximum concentration: 124 μg Gum Xanthan equivalents (Xeq.) l−1), but concentrations were uniformly low (mean concentration: 28.5±10.2 μg Xeq. l−1) during autumn at the BIOTRANS site (47°N, 20°W). TEP concentrations in the open northeast Atlantic were considerably lower than previously published values from coastal sites. However, during June/July TEP:Chl a (weight/weight) ratios were comparable to values at coastal seas. It is suggested that phytoplankton production modulates TEP concentration in the open ocean as it does in coastal systems. TEP contributed significantly to the organic carbon pool as derived from the ratio TEP-C:POC, in summer (mean percentage: 17±7.5; w/w), as well as in autumn (mean percentage: 18±11, w/w). The potential influence of TEP on particle coagulation rates in the northeast Atlantic was assessed from estimates of their influence on particle stickiness and on particle volume concentrations. This indicated that TEP may be essential for initiating particle aggregation at low biomass concentrations, typical for open ocean sites.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-09-23
    Description: Two cruises were conducted after the diatom spring bloom in the northern Bay of Biscay (2006, 2007), to assess the contribution of combined carbohydrates to organic carbon partitioning. Partitioning of total organic carbon (TOC) into particulate organic carbon (POC) and dissolved organic carbon (DOC) differed between the two years, particularly for depths above 60 m, and was related to the vernal development of the system: a post spring-bloom system in 2007, and a more stratified summer system with higher coccolithophore abundance in 2006. In general, contribution of POC to TOC ranged between 4% and 28% and decreased with depth. Concentration of high-molecular-weight (HMW;〉1 kDa) dissolved combined carbohydrates (dCCHO) ranged from 0.6 to 1.4 μmol L−1 and contributed between 4% and 11% to DOC. Concentration of particulate combined carbohydrates (pCCHO) varied between 0.03 and 1.3 μmol L−1. A high contribution of pCCHO to POC was observed in 2007, i.e. 22–60% C compared to 3–10% C in 2006, and coincided with a higher abundance of transparent exopolymer particles (TEP). TEP accounted for 0.4–2.0 μmol C L−1 in 2007 and 0.5–1.5 μmol C L−1 in 2006. Above 60 m, differences in contribution of TEP-C to POC were most pronounced yielding 15.4±3.0% in 2007 compared to relatively low 4.8±1.4%, in 2006. TEP-C could explain about 60% in 2007 and about 40% of pCCHO-C in 2006. Hence, TEP were identified as a substantial component of pCCHO and POC, particularly in the wake of the spring bloom. Molecular composition of CCHO, i.e. HMW−dCCHO+pCCHO, revealed little difference between the years but strong variation over depth. Uronic acids (URA) were identified as a major component of CCHO (20–40%). Our study indicates that the distribution and composition of CCHO in surface seawater are determined by biogeochemical processes on a seasonal scale. A better knowledge of CCHO cycling and molecular signature has therefore a high potential for a better tracing of carbon dynamics in shelf sea ecosystems. Highlights: ► Role of combined carbohydrates for DOC–POC partitioning assessed (Bay of Biscay). ► TEP comprised substantial carbon fraction of particulate carbohydrates. ► Molecular composition of polysaccharides revealed organic matter diagenesis. ► Uronic acids comprised 20–40% of total and dissolved combined carbohydrates.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-09-23
    Description: The sea surface microlayer (SML) covers more than 70% of the Earth’s surface and is the boundary layer interface between the ocean and the atmosphere. This important biogeochemical and ecological system is critical to a diverse range of Earth system processes, including the synthesis, transformation and cycling of organic material, and the air–sea exchange of gases, particles and aerosols. In this review we discuss the SML paradigm, taking into account physicochemical and biological characteristics that define SML structure and function. These include enrichments in biogenic molecules such as carbohydrates, lipids and proteinaceous material that contribute to organic carbon cycling, distinct microbial assemblages that participate in air–sea gas exchange, the generation of climate-active aerosols and the accumulation of anthropogenic pollutants with potentially serious implications for the health of the ocean. Characteristically large physical, chemical and biological gradients thus separate the SML from the underlying water and the available evidence implies that the SML retains its integrity over wide ranging environmental conditions. In support of this we present previously unpublished time series data on bacterioneuston composition and SML surfactant activity immediately following physical SML disruption; these imply timescales of the order of minutes for the reestablishment of the SML following disruption. A progressive approach to understanding the SML and hence its role in global biogeochemistry can only be achieved by considering as an integrated whole, all the key components of this complex environment. Highlights ► The sea surface microlayer is a biogenic film layer at the air-ocean interface. ► Distinct microbial assemblages have defining roles in microlayer functions. ► The sea surface microlayer is fundamentally involved in air-ocean transfer. ► The sea surface microlayer is linked to aerosol production. ► The sea surface microlayer is reservoir of pollutants.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-12-19
    Description: Highlights: • TEPs and CSPs showed different production patterns and particle-association behaviors. • TEPs and CSPs had different vertical distributions in the Sargasso Sea. • CSP as well as TEP gels are linked by cation bridging. • FlowCAM can be used for in-situ visualization and imaging of TEPs and CSPs in parallel-stained samples. • In-situ visualization of TEPs and CSPs led to new insights about particle interaction and their role in aggregation. Abstract: The discovery of ubiquitous, abundant and transparent gel-like particles, such as the polysaccharide-containing transparent exopolymer particles (TEP) and protein-containing Coomassie stainable particles (CSP) has changed our conception of particle–organism interaction and created new questions about the origin, composition, and role of these particles in aquatic systems. Using both standard and novel staining methods, we studied these gel-like particles to determine whether CSP and TEP are sub-units of the same particle, are distinct particles with different characteristics and behaviors, or are both. Our seawater mesocosm results show that phytoplankton produce both TEP and CSP; however, their highest abundances occur at differences phases in the phytoplankton bloom. We developed a new technique for visualizing stained transparent material in unfiltered aqueous samples with the FlowCAM; this technique allows in-situ visualization and imaging of TEP and CSP in parallel stained samples. Visual examination of stained and unstained TEP and CSP from seawater microcosms, marine algal cultures, and freshwater showed that TEP and CSP have different shape, size and particle-association behavior. In a diatom-dominated microcosm, TEP concentrations were higher than CSP concentrations and unlike CSP, TEP were usually associated with diatom cells or aggregates. The cyanobacteria culture, however, showed higher CSP than TEP concentrations and aggregates of those cells appeared to be CSP-rich. Vertical and seasonal distributions of TEP and CSP in the Sargasso Sea were different. Even though both types of particles were most abundant in the upper 100 m of the water column, CSP closely followed fluorescence and total particle concentration, while the highest TEP concentration was always in the shallowest sample collected. Thus, we conclude that TEP and CSP are different particles, produced by different species at different growth phases and rates. They have different roles and are affected by different processes according to the community composition and environmental conditions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-03-19
    Description: The quantitative relationship between organic carbon and mineral contents of particles sinking below 1800 m in the ocean indicates that organisms with mineral shells such as coccolithophores are of special importance for transporting carbon into the deep sea. Several hypotheses about the mechanism behind this relationship between minerals and organic matter have been raised, such as mineral protection of organic matter or enhanced sinking rates through ballast addition. We examined organic matter decomposition of calcifying and non-calcifying Emiliania huxleyi cultures in an experiment that allowed aggregation and settling in rotating tanks. Biogenic components such as particulate carbon, particulate nitrogen, particulate volume, pigments, transparent exopolymer particles (TEP), and particulate amino acids in suspended particles and aggregates were followed over a period of 30 d. The overall pattern of decrease in organic matter, the amount of recalcitrant organic matter left after 30 d, and the compositional changes within particulate organic matter indicated that cells without a shell are more subject to loss than calcified cells. It is suggested that biogenic calcite helps in the preservation of particulate organic matter (POM) by offering structural support for organic molecules. Over the course of the experiment, half the particulate organic carbon in both calcifying and non-calcifying cultures was partitioned into aggregates and remained so until the end of the experiment. The partial protection of particulate organic matter from solubilization by biominerals and by aggregation that was observed in our experiment may help explain the robustness of the relationship between organic and mineral matter fluxes in the deep ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-03-20
    Description: The MedFlux project was devised to determine and model relationships between organic matter and mineral ballasts of sinking particulate matter in the ocean. Specifically we investigated the ballast ratio hypothesis, tested various commonly used sampling and modeling techniques, and developed new technologies that would allow better characterization of particle biogeochemistry. Here we describe the rationale for the project, the biogeochemical provenance of the DYFAMED site, the international support structure, and highlights from the papers published here. Additional MedFlux papers can be accessed at the MedFlux web site (http://msrc.sunysb.edu/MedFlux/).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...