GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Keywords
Language
  • 1
    Keywords: Tamar ; Ästuar ; Diagenese
    Type of Medium: Book
    Pages: 49 S , graph. Darst
    ISBN: 3510570162
    Series Statement: Contributions to sedimentology 16
    RVK:
    Language: English
    Note: Literaturverz. S. 46 - 49
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Fitzer, Susan C; Caldwell, Gary S; Close, Andrew J; Clare, Anthony S; Upstill-Goddard, Robert C; Bentley, Matthew G (2012): Ocean acidification induces multi-generational decline in copepod naupliar production with possible conflict for reproductive resource allocation. Journal of Experimental Marine Biology and Ecology, 418-419, 30-36, https://doi.org/10.1016/j.jembe.2012.03.009
    Publication Date: 2024-03-15
    Description: Climate change, including ocean acidification (OA), presents fundamental challenges to marine biodiversity and sustained ecosystem health. We determined reproductive response (measured as naupliar production), cuticle composition and stage specific growth of the copepod Tisbe battagliai over three generations at four pH conditions (pH 7.67, 7.82, 7.95, and 8.06). Naupliar production increased significantly at pH 7.95 compared with pH 8.06 followed by a decline at pH 7.82. Naupliar production at pH 7.67 was higher than pH 7.82. We attribute the increase at pH 7.95 to an initial stress response which was succeeded by a hormesis-like response at pH 7.67. A multi-generational modelling approach predicted a gradual decline in naupliar production over the next 100 years (equivalent to approximately 2430 generations). There was a significant growth reduction (mean length integrated across developmental stage) relative to controls. There was a significant increase in the proportion of carbon relative to oxygen within the cuticle as seawater pH decreased. Changes in growth, cuticle composition and naupliar production strongly suggest that copepods subjected to OA-induced stress preferentially reallocate resources towards maintaining reproductive output at the expense of somatic growth and cuticle composition. These responses may drive shifts in life history strategies that favour smaller brood sizes, females and perhaps later maturing females, with the potential to profoundly destabilise marine trophodynamics.
    Keywords: Alkalinity, total; Animalia; Aragonite saturation state; Arthropoda; Bicarbonate ion; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Elements; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Generation; Group; Growth/Morphology; Identification; Laboratory experiment; Length; Nauplii; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; Percentage; pH; pH, standard deviation; Potentiometric; Potentiometric titration; Replicates; Reproduction; Salinity; Sample code/label; Single species; Species; Stage; Temperate; Temperature, water; Temperature, water, standard deviation; Tisbe battagliai; Treatment; Zooplankton
    Type: Dataset
    Format: text/tab-separated-values, 30348 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-04-23
    Description: Concentrations of alkalinity (TA) and dissolved inorganic carbon (DIC) in porewater as well as in surface water measured during timeseries (fixed location) and spatial surveys (fixed time period) were compiled from 38 mangrove- and 8 saltmarsh-dominated creeks and estuaries. We used data from creeks that were predominantly surrounded by mangrove or saltmarsh vegetation and with minimal confounding factors such as mixed vegetation or large catchments. These creeks were located in either pristine or anthropologically impacted estuaries or coastal areas. Anthropologically impacted areas were defined as areas that were affected by nearby urban or agricultural activities, potentially delivering pollutants, e.g., sewage or fertilizers, to creeks. We also included pristine mangrove- and saltmarsh dominated estuaries. When available, environmental parameters were also recorded, i.e., season, salinity, temperature, pH, dissolved oxygen (DO), water level, porewater tracer radon (222Rn), partial pressure of carbon dioxide (pCO2), dissolved organic carbon (DOC), particulate organic carbon (POC), nitrate and nitrite (NOx), ammonium (NH4), total nitrogen (TN), phosphate (PO4), and total phosphorus (TP). Methods used to determine parameters are explained in each corresponding reference.
    Keywords: Alkalinity; Alkalinity, total; Alkalinity, total/Carbon, inorganic, dissolved ratio; Ammonium; Australia; Australia_M29; Australia_M30; Australia_M31; Australia_M32; Australia_M33; Australia_M34; Australia_M35; Australia_M36; Australia_M37; Australia_M38; blue carbon; Boron hydroxide; Brazil; Brazil_M18; Brazil_M19; Brazil_M20; Brazil_M21; CA_USA_S02; Carbon, inorganic, dissolved; Carbon, organic, dissolved; Carbon, organic, particulate; Carbon dioxide, partial pressure; China; China_M03; China_S06; China_S07; China_S08; Condition; Country; DATE/TIME; Date/Time local; Dissolved inorganic carbon; Ecosystem; Ecuador; Ecuador_M22; Event label; French_Guiana_M17; French Guiana; GA_USA_S04; Identification; India; India_M04; India_M05; India_M06; India_M07; India_M08; India_M09; Japan; Japan_M02; Kenya; Kenya_M23; Kenya_M24; LATITUDE; LONGITUDE; MA_USA_S01; Madagascar; Madagascar_M28; mangroves; Nitrogen, total; Nitrogen oxide; Oxygen, dissolved; Palau; Palau_M15; Palau_M16; Papua_New_Guinea_M25; Papua New Guinea; pH; Philippines; Philippines_M10; Phosphate; Phosphorus, total; Radon-222; Reference/source; Salinity; saltmarshes; Sample type; SC_USA_S03; Season; Site; Spain; Spain_S05; Tanzania; Tanzania_M26; Tanzania_M27; Temperature, water; Thailand; Thailand_M14; USA; USA_M01; Vietnam; Vietnam_M11; Vietnam_M12; Vietnam_M13; Water level; Water sample; WS
    Type: Dataset
    Format: text/tab-separated-values, 67107 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 349 (1991), S. 145-147 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Our technique uses the simultaneous release into the water column of small quantities of the two inert, non-toxic gaseous tracers sulphur hexafluoride (SF6) and 3He. The tracers transfer to the atmosphere at different rates, so that the ratio of their concentrations changes with time. It can ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-02-08
    Description: Large-scale climatic forcing is impacting oceanic biogeochemical cycles and is expected to influence the water-column distribution of trace gases, including methane and nitrous oxide. Our ability as a scientific community to evaluate changes in the water-column inventories of methane and nitrous oxide depends largely on our capacity to obtain robust and accurate concentration measurements that can be validated across different laboratory groups. This study represents the first formal international intercomparison of oceanic methane and nitrous oxide measurements whereby participating laboratories received batches of seawater samples from the subtropical Pacific Ocean and the Baltic Sea. Additionally, compressed gas standards from the same calibration scale were distributed to the majority of participating laboratories to improve the analytical accuracy of the gas measurements. The computations used by each laboratory to derive the dissolved gas concentrations were also evaluated for inconsistencies (e.g., pressure and temperature corrections, solubility constants). The results from the intercomparison and intercalibration provided invaluable insights into methane and nitrous oxide measurements. It was observed that analyses of seawater samples with the lowest concentrations of methane and nitrous oxide had the lowest precisions. In comparison, while the analytical precision for samples with the highest concentrations of trace gases was better, the variability between the different laboratories was higher: 36% for methane and 27% for nitrous oxide. In addition, the comparison of different batches of seawater samples with methane and nitrous oxide concentrations that ranged over an order of magnitude revealed the ramifications of different calibration procedures for each trace gas. Finally, this study builds upon the intercomparison results to develop recommendations for improving oceanic methane and nitrous oxide measurements, with the aim of precluding future analytical discrepancies between laboratories.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-09-23
    Description: The sea surface microlayer (SML) covers more than 70% of the Earth’s surface and is the boundary layer interface between the ocean and the atmosphere. This important biogeochemical and ecological system is critical to a diverse range of Earth system processes, including the synthesis, transformation and cycling of organic material, and the air–sea exchange of gases, particles and aerosols. In this review we discuss the SML paradigm, taking into account physicochemical and biological characteristics that define SML structure and function. These include enrichments in biogenic molecules such as carbohydrates, lipids and proteinaceous material that contribute to organic carbon cycling, distinct microbial assemblages that participate in air–sea gas exchange, the generation of climate-active aerosols and the accumulation of anthropogenic pollutants with potentially serious implications for the health of the ocean. Characteristically large physical, chemical and biological gradients thus separate the SML from the underlying water and the available evidence implies that the SML retains its integrity over wide ranging environmental conditions. In support of this we present previously unpublished time series data on bacterioneuston composition and SML surfactant activity immediately following physical SML disruption; these imply timescales of the order of minutes for the reestablishment of the SML following disruption. A progressive approach to understanding the SML and hence its role in global biogeochemistry can only be achieved by considering as an integrated whole, all the key components of this complex environment. Highlights ► The sea surface microlayer is a biogenic film layer at the air-ocean interface. ► Distinct microbial assemblages have defining roles in microlayer functions. ► The sea surface microlayer is fundamentally involved in air-ocean transfer. ► The sea surface microlayer is linked to aerosol production. ► The sea surface microlayer is reservoir of pollutants.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-02-06
    Description: Despite the huge extent of the ocean's surface, until now relatively little attention has been paid to the sea surface microlayer (SML) as the ultimate interface where heat, momentum and mass exchange between the ocean and the atmosphere takes place. Via the SML, large-scale environmental changes in the ocean such as warming, acidification, deoxygenation, and eutrophication potentially influence cloud formation, precipitation, and the global radiation balance. Due to the deep connectivity between biological, chemical, and physical processes, studies of the SML may reveal multiple sensitivities to global and regional changes. Understanding the processes at the ocean's surface, in particular involving the SML as an important and determinant interface, could therefore provide an essential contribution to the reduction of uncertainties regarding ocean-climate feedbacks. This review identifies gaps in our current knowledge of the SML and highlights a need to develop a holistic and mechanistic understanding of the diverse biological, chemical, and physical processes occurring at the ocean-atmosphere interface. We advocate the development of strong interdisciplinary expertise and collaboration in order to bridge between ocean and atmospheric sciences. Although this will pose significant methodological challenges, such an initiative would represent a new role model for interdisciplinary research in Earth System sciences.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-02-08
    Description: In the current era of rapid climate change, accurate characterization of climate-relevant gas dynamics-namely production, consumption, and net emissions-is required for all biomes, especially those ecosystems most susceptible to the impact of change. Marine environments include regions that act as net sources or sinks for numerous climateactive trace gases including methane (CH4) and nitrous oxide (N2O). The temporal and spatial distributions of CH4 and N2O are controlled by the interaction of complex biogeochemical and physical processes. To evaluate and quantify how these mechanisms affect marine CH4 and N2O cycling requires a combination of traditional scientific disciplines including oceanography, microbiology, and numerical modeling. Fundamental to these efforts is ensuring that the datasets produced by independent scientists are comparable and interoperable. Equally critical is transparent communication within the research community about the technical improvements required to increase our collective understanding of marine CH4 and N2O. A workshop sponsored by Ocean Carbon and Biogeochemistry (OCB) was organized to enhance dialogue and collaborations pertaining to marine CH4 and N2O. Here, we summarize the outcomes from the workshop to describe the challenges and opportunities for near-future CH4 and N2O research in the marine environment.
    Type: Article , PeerReviewed
    Format: text
    Format: video
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-02-08
    Description: MILAN was a multidisciplinary, international study examining how the diel variability of sea-surface microlayer biogeochemical properties potentially impacts ocean-atmosphere interaction, in order to improve our understanding of this globally important process. The sea-surface microlayer (SML) at the air-sea interface is 〈 1 mm deep but it is physically, chemically and biologically distinct from the underlying water and the atmosphere above. Wind-driven turbulence and solar radiation are important drivers of SML physical and biogeochemical properties. Given that the SML is involved in all ocean-atmosphere exchanges of mass and energy, its response to solar radiation, especially in relation to how it regulates the air-sea exchange of climate-relevant gases and aerosols, is surprisingly poorly characterised. MILAN (sea-surface MIcroLAyer at Night) was an international, multidisciplinary campaign designed to specifically address this issue. In spring 2017, we deployed diverse sampling platforms (research vessels, radio-controlled catamaran, free-drifting buoy) to study full diel cycles in the coastal North Sea SML and in underlying water, and installed a land-based aerosol sampler. We also carried out concurrent ex situ experiments using several microsensors, a laboratory gas exchange tank, a solar simulator, and a sea spray simulation chamber. In this paper we outline the diversity of approaches employed and some initial results obtained during MILAN. Our observations of diel SML variability, e.g. the influence of changing solar radiation on the quantity and quality of organic material, and diel changes in wind intensity primarily forcing air-sea CO2 exchange, underline the value and the need of multidisciplinary campaigns for integrating SML complexity into the context of air-sea interaction.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-01-31
    Description: Nitrous oxide (N2O) is an important atmospheric trace gas involved in tropospheric warming and stratospheric ozone depletion. Estimates of the global ocean contribution to N2O emissions average 21% (range: 10 to 53%). Ongoing environmental changes such as warming, deoxygenation and acidification are affecting oceanic N2O cycling and emissions to the atmosphere. International activities over the last decades aimed at improving estimates of global N2O emissions, including (i) the MarinE MethanE and NiTrous Oxide database (MEMENTO) for archiving of quality-controlled data, and (ii) a recent large-scale inter-laboratory comparison by Working Group 143 of the Scientific Committee on Ocean Research (SCOR). To reduce uncertainties in oceanic N2O emission estimates and to characterize the spatial and temporal variability in N2O distributions in a changing ocean, we propose the establishment of a harmonized N2O Observation Network (N2O-ON) combining discrete and continuous data from various platforms. The network will integrate observations obtained by calibrated techniques, using time series measurements at fixed stations and repeated hydrographic sections on voluntary observing ships and research vessels. In addition to exploiting existing oceanographic infrastructure, we propose the establishment of central calibration facilities in selected international laboratories to improve accuracy, and ensure standardization and comparability of N2O measurements. Final data products will include a harmonized global N2O concentration and emission fields for use in model validation and projections of future oceanic N2O emissions, to inform the global research community and policy makers.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...