GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Years
  • 1
    Publication Date: 2019-02-01
    Description: Coral reefs in the central Red Sea are sparsely studied and in situ data on physico-chemical and key biotic variables that provide an important comparative baseline are missing. To address this gap, we simultaneously monitored three reefs along a cross-shelf gradient for an entire year over four seasons, collecting data on currents, temperature, salinity, dissolved oxygen (DO), chlorophyll-a, turbidity, inorganic nutrients, sedimentation, bacterial communities of reef water, and bacterial and algal composition of epilithic biofilms. Summer temperature (29–33°C) and salinity (39 PSU) exceeded average global maxima for coral reefs, whereas DO concentration was low (2–4 mg L-1). While temperature and salinity differences were most pronounced between seasons, DO, chlorophyll-a, turbidity, and sedimentation varied most between reefs. Similarly, biotic communities were highly dynamic between reefs and seasons. Differences in bacterial biofilms were driven by four abundant families: Rhodobacteraceae, Flavobacteriaceae, Flammeovirgaceae, and Pseudanabaenaceae. In algal biofilms, green crusts, brown crusts, and crustose coralline algae were most abundant and accounted for most of the variability of the communities. Higher bacterial diversity of biofilms coincided with increased algal cover during spring and summer. By employing multivariate matching, we identified temperature, salinity, DO, and chlorophyll-a as the main contributing physico-chemical drivers of biotic community structures. These parameters are forecast to change most with the progression of ocean warming and increased nutrient input, which suggests an effect on the recruitment of Red Sea benthic communities as a result of climate change and anthropogenic influence. In conclusion, our study provides insight into coral reef functioning in the Red Sea and a comparative baseline to support coral reef studies in the region.
    Type: Article , PeerReviewed
    Format: other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-02-08
    Description: From protists to humans, all animals and plants are inhabited by microbial organisms. There is an increasing appreciation that these resident microbes influence the fitness of their plant and animal hosts, ultimately forming a metaorganism consisting of a uni- or multicellular host and a community of associated microorganisms. Research on host–microbe interactions has become an emerging cross-disciplinary field. In both vertebrates and invertebrates a complex microbiome confers immunological, metabolic and behavioural benefits; conversely, its disturbance can contribute to the development of disease states. However, the molecular and cellular mechanisms controlling the interactions within a metaorganism are poorly understood and many key interactions between the associated organisms remain unknown. In this perspective article, we outline some of the issues in interspecies interactions and in particular address the question of how metaorganisms react and adapt to inputs from extreme environments such as deserts, the intertidal zone, oligothrophic seas, and hydrothermal vents
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-02-08
    Description: Coral bleaching continues to be one of the most devastating and immediate impacts of climate change on coral reef ecosystems worldwide. In 2015, a major bleaching event was declared as the “3rd global coral bleaching event” by the United States National Oceanic and Atmospheric Administration, impacting a large number of reefs in every major ocean. The Red Sea was no exception, and we present herein in situ observations of the status of coral reefs in the central Saudi Arabian Red Sea from September 2015, following extended periods of high temperatures reaching upwards of 32.5C in our study area. We examined eleven reefs using line-intercept transects at three different depths, including all reefs that were surveyed during a previous bleaching event in 2010. Bleaching was most prevalent on inshore reefs (55.6% ± 14.6% of live coral cover exhibited bleaching) and on shallower transects (41% ± 10.2% of live corals surveyed at 5m depth) within reefs. Similar taxonomic groups (e.g., Agariciidae) were affected in 2015 and in 2010. Most interestingly, Acropora and Porites had similar bleaching rates (~30% each) and similar relative coral cover (~7% each) across all reefs in 2015. Coral genera with the highest levels of bleaching (〉60%) were also among the rarest (〈1% of coral cover) in 2015. While this bodes well for the relative retention of coral cover, it may ultimately lead to decreased species richness, often considered an important component of a healthy coral reef. The resultant long-term changes in these coral reef communities remain to be seen.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Springer
    In:  In: Oceanographic and Biological Aspects of the Red Sea. , ed. by Rasul, N. M. A. and Stewart, I. C. F. Springer, Cham, Switzerland, pp. 401-418. ISBN 978-3-319-99416-1
    Publication Date: 2018-12-14
    Description: Coral reefs in the Red Sea belong to the most diverse and productive reef ecosystems worldwide, although they are exposed to strong seasonal variability, high temperature, and high salinity. These factors are considered stressful for coral reef biota and challenge reef growth in other oceans, but coral reefs in the Red Sea thrive despite these challenges. In the central Red Sea high temperatures, high salinities, and low dissolved oxygen on the one hand reflect conditions that are predicted for ‘future oceans’ under global warming. On the other hand, alkalinity and other carbonate chemistry parameters are considered favourable for coral growth. In coral reefs of the central Red Sea, temperature and salinity follow a seasonal cycle, while chlorophyll and inorganic nutrients mostly vary spatially, and dissolved oxygen and pH fluctuate on the scale of hours to days. Within these strong environmental gradients micro- and macroscopic reef communities are dynamic and demonstrate plasticity and acclimatisation potential. Epilithic biofilm communities of bacteria and algae, crucial for the recruitment of reef-builders, undergo seasonal community shifts that are mainly driven by changes in temperature, salinity, and dissolved oxygen. These variables are predicted to change with the progression of global environmental change and suggest an immediate effect of climate change on the microbial community composition of biofilms. Corals are so-called holobionts and associate with a variety of microbial organisms that fulfill important functions in coral health and productivity. For instance, coral-associated bacterial communities are more specific and less diverse than those of marine biofilms, and in many coral species in the central Red Sea they are dominated by bacteria from the genus Endozoicomonas. Generally, coral microbiomes align with ecological differences between reef sites. They are similar at sites where these corals are abundant and successful. Coral microbiomes reveal a measurable footprint of anthropogenic influence at polluted sites. Coral-associated communities of endosymbiotic dinoflagellates in central Red Sea corals are dominated by Symbiodinium from clade C. Some corals harbour the same specific symbiont with a high physiological plasticity throughout their distribution range, while others maintain a more flexible association with varying symbionts of high physiological specificity over depths, seasons, or reef locations. The coral-Symbiodinium endosymbiosis drives calcification of the coral skeleton, which is a key process that provides maintenance and formation of the reef framework. Calcification rates and reef growth are not higher than in other coral reef regions, despite the beneficial carbonate chemistry in the central Red Sea. This may be related to the comparatively high temperatures, as indicated by reduced summer calcification and long-term slowing of growth rates that correlate with ocean warming trends. Indeed, thermal limits of abundant coral species in the central Red Sea may have been exceeded, as evidenced by repeated mass bleaching events during previous years. Recent comprehensive baseline data from central Red Sea reefs allow for insight into coral reef functioning and for quantification of the impacts of environmental change in the region.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-03-15
    Description: Ocean acidification (OA) poses a major threat to calcifying organisms such as reef-building corals, typically leading to reduced calcification rates. Mechanisms to compensate the effects of OA on coral growth may, however, involve processes other than calcification. Yet, the physiological patterns mediating coral growth under OA are not fully understood, despite an extensive body of literature characterizing physiological changes in corals under OA. Therefore, we conducted a three-month laboratory experiment with six scleractinian coral species (Acropora humilis, Acropora millepora, Pocillopora damicornis, Pocillopora verrucosa, Porites cylindrica, and Porites lutea) to assess physiological parameters that potentially characterize growth (calcification, volume, and surface area), maintenance (tissue biomass, and lipid and protein content), and cellular stress (apoptotic activity) response under ambient (pH 7.9) and low pH (pH 7.7). We identified genus- and species-specific physiological parameters potentially mediating the observed growth responses to low pH. We found no significant changes in calcification but species showed decreasing growth in volume and surface area, which occurred alongside changes in maintenance and cellular stress parameters that differed between genera and species. Acropora spp. showed elevated cellular stress and Pocillopora spp. showed changes in maintenance-associated parameters, while both genera largely maintained growth under low pH. Conversely, Porites spp. experienced the largest decreases in volume growth but showed no major changes in parameters related to maintenance or cellular stress. Our findings indicate that growth- and calcification-related responses alone may not fully reflect coral susceptibility to OA. They may also contribute to a better understanding of the complex physiological processes leading to differential growth changes of reef-building corals in response to low pH conditions.
    Keywords: Acropora humilis; Acropora millepora; Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Apoptotic activity, per protein; Apoptotic activity, per protein, standard deviation; Aragonite saturation state; Aragonite saturation state, standard deviation; Benthic animals; Benthos; Bicarbonate ion; Calcification/Dissolution; Calcification rate, standard deviation; Calcification rate of calcium carbonate per month; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cnidaria; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Growth rate; Growth rate, standard deviation; Growth rate, volume per surface area; Laboratory experiment; Lipids, per ash free dry mass; Lipids, standard deviation; OA-ICC; Ocean Acidification International Coordination Centre; Other studied parameter or process; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Pocillopora damicornis; Pocillopora verrucosa; Porites cylindrica; Porites lutea; Proteins, per ash free dry mass; Proteins, standard deviation; Replicates; Respiration; Salinity; Salinity, standard deviation; Single species; South Pacific; Species, unique identification; Species, unique identification (Semantic URI); Species, unique identification (URI); Temperature, water; Temperature, water, standard deviation; Tissue biomass; Tissue biomass, standard deviation; Treatment; Tropical; Type
    Type: Dataset
    Format: text/tab-separated-values, 600 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-03-15
    Description: Ocean warming and ocean acidification (OA) are direct consequences of climate change and affect coral reefs worldwide. While the effect of ocean warming manifests itself in increased frequency and severity of coral bleaching, the effects of ocean acidification on corals are less clear. In particular, long-term effects of OA on the bacterial communities associated with corals are largely unknown. In this study, we investigated the effects of ocean acidification on the resident and active microbiome of long-term aquaria-maintained Stylophora pistillata colonies by assessing 16S rRNA gene diversity on the DNA (resident community) and RNA level (active community). Coral colony fragments of S. pistillata were kept in aquaria for 2 years at four different pCO2 levels ranging from current pH conditions to increased acidification scenarios (i.e., pH 7.2, 7.4, 7.8, and 8). We identified 154 bacterial families encompassing 2,047 taxa (OTUs) in the resident and 89 bacterial families including 1,659 OTUs in the active communities. Resident communities were dominated by members of Alteromonadaceae, Flavobacteriaceae, and Colwelliaceae, while active communities were dominated by families Cyclobacteriacea and Amoebophilaceae. Besides the overall differences between resident and active community composition, significant differences were seen between the control (pH 8) and the two lower pH treatments (7.2 and 7.4) in the active community, but only between pH 8 and 7.2 in the resident community. Our analyses revealed profound differences between the resident and active microbial communities, and we found that OA exerted stronger effects on the active community. Further, our results suggest that rDNA- and rRNA-based sequencing should be considered complementary tools to investigate the effects of environmental change on microbial assemblage structure and activity.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Aragonite saturation state, standard deviation; Benthos; Bicarbonate ion; Bicarbonate ion, standard deviation; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Chao 1 richness; Chao 1 richness, standard deviation; Chao 1 richness, standard error; Community composition and diversity; Containers and aquaria (20-1000 L or 〈 1 m**2); Entire community; Evenness of species; Evenness of species, standard deviation; Evenness of species, standard error; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Laboratory experiment; Laboratory strains; Not applicable; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Rocky-shore community; Salinity; Shannon Diversity Index; Shannon Diversity Index, standard deviation; Shannon Diversity index, standard error; Temperature, water; Treatment; Type
    Type: Dataset
    Format: text/tab-separated-values, 180 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...