GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Years
  • 1
    Publication Date: 2024-03-15
    Description: Ocean warming and ocean acidification (OA) are direct consequences of climate change and affect coral reefs worldwide. While the effect of ocean warming manifests itself in increased frequency and severity of coral bleaching, the effects of ocean acidification on corals are less clear. In particular, long-term effects of OA on the bacterial communities associated with corals are largely unknown. In this study, we investigated the effects of ocean acidification on the resident and active microbiome of long-term aquaria-maintained Stylophora pistillata colonies by assessing 16S rRNA gene diversity on the DNA (resident community) and RNA level (active community). Coral colony fragments of S. pistillata were kept in aquaria for 2 years at four different pCO2 levels ranging from current pH conditions to increased acidification scenarios (i.e., pH 7.2, 7.4, 7.8, and 8). We identified 154 bacterial families encompassing 2,047 taxa (OTUs) in the resident and 89 bacterial families including 1,659 OTUs in the active communities. Resident communities were dominated by members of Alteromonadaceae, Flavobacteriaceae, and Colwelliaceae, while active communities were dominated by families Cyclobacteriacea and Amoebophilaceae. Besides the overall differences between resident and active community composition, significant differences were seen between the control (pH 8) and the two lower pH treatments (7.2 and 7.4) in the active community, but only between pH 8 and 7.2 in the resident community. Our analyses revealed profound differences between the resident and active microbial communities, and we found that OA exerted stronger effects on the active community. Further, our results suggest that rDNA- and rRNA-based sequencing should be considered complementary tools to investigate the effects of environmental change on microbial assemblage structure and activity.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Aragonite saturation state, standard deviation; Benthos; Bicarbonate ion; Bicarbonate ion, standard deviation; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Chao 1 richness; Chao 1 richness, standard deviation; Chao 1 richness, standard error; Community composition and diversity; Containers and aquaria (20-1000 L or 〈 1 m**2); Entire community; Evenness of species; Evenness of species, standard deviation; Evenness of species, standard error; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Laboratory experiment; Laboratory strains; Not applicable; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Rocky-shore community; Salinity; Shannon Diversity Index; Shannon Diversity Index, standard deviation; Shannon Diversity index, standard error; Temperature, water; Treatment; Type
    Type: Dataset
    Format: text/tab-separated-values, 180 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-03-15
    Description: There are increasing concerns that the current rate of climate change might outpace the ability of reef-building corals to adapt to future conditions. Work on model systems has shown that environmentally induced alterations in DNA methylation can lead to phenotypic acclimatization. While DNA methylation has been reported in corals and is thought to associate with phenotypic plasticity, potential mechanisms linked to changes in whole-genome methylation have yet to be elucidated. We show that DNA methylation significantly reduces spurious transcription in the coral Stylophora pistillata. Furthermore, we find that DNA methylation also reduces transcriptional noise by fine-tuning the expression of highly expressed genes. Analysis of DNA methylation patterns of corals subjected to long-term pH stress showed widespread changes in pathways regulating cell cycle and body size. Correspondingly, we found significant increases in cell and polyp sizes that resulted in more porous skeletons, supporting the hypothesis that linear extension rates are maintained under conditions of reduced calcification. These findings suggest an epigenetic component in phenotypic acclimatization that provides corals with an additional mechanism to cope with environmental change.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Aragonite saturation state, standard deviation; Benthic animals; Benthos; Bicarbonate ion; Bicarbonate ion, standard deviation; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Calyx size; Calyx size, standard error; Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Cell size; Cell size, standard error; Cnidaria; Containers and aquaria (20-1000 L or 〈 1 m**2); Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Laboratory experiment; Laboratory strains; Not applicable; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Potentiometric titration; Salinity; Single species; Skeletal porosity; Skeletal porosity, standard error; Species, unique identification; Species, unique identification (Semantic URI); Species, unique identification (URI); Spectrophotometric; Stylophora pistillata; Temperature, water; Treatment; Type of study
    Type: Dataset
    Format: text/tab-separated-values, 68 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-03-15
    Description: Ocean acidification (OA) has both detrimental as well as beneficial effects on marine life; it negatively affects calcifiers while enhancing the productivity of photosynthetic organisms. To date, many studies have focused on the impacts of OA on calcification in reef-building corals, a process particularly susceptible to acidification. However, little is known about the effects of OA on their photosynthetic algal partners, with some studies suggesting potential benefits for symbiont productivity. Here, we investigated the transcriptomic response of the endosymbiont Symbiodinium microadriaticum (CCMP2467) in the Red Sea coral Stylophora pistillata subjected to different long-term (2 years) OA treatments (pH 8.0, 7.8, 7.4, 7.2). Transcriptomic analyses revealed that symbionts from corals under lower pH treatments responded to acidification by increasing the expression of genes related to photosynthesis and carbon-concentrating mechanisms. These processes were mostly up-regulated and associated metabolic pathways were significantly enriched, suggesting an overall positive effect of OA on the expression of photosynthesis-related genes. To test this conclusion on a physiological level, we analyzed the symbiont's photochemical performance across treatments. However, in contrast to the beneficial effects suggested by the observed gene expression changes, we found significant impairment of photosynthesis with increasing pCO2. Collectively, our data suggest that over-expression of photosynthesis-related genes is not a beneficial effect of OA but rather an acclimation response of the holobiont to different water chemistries. Our study highlights the complex effects of ocean acidification on these symbiotic organisms and the role of the host in determining symbiont productivity and performance.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Aragonite saturation state, standard deviation; Bicarbonate ion; Bicarbonate ion, standard deviation; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Chromista; Direction; Duration; Fold change; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Gene expression (incl. proteomics); Gene name; Laboratory experiment; Laboratory strains; Myzozoa; Not applicable; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Photosynthetic efficiency; Photosynthetic efficiency, standard error; Phytoplankton; Primary production/Photosynthesis; Registration number of species; Salinity; Sample ID; Single species; Species; Symbiodinium microadriaticum; Temperature, water; Treatment; Type; Uniform resource locator/link to reference
    Type: Dataset
    Format: text/tab-separated-values, 21554 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-12-19
    Description: The significance of bacteria for eukaryotic functioning is increasingly recognized. Coral reef ecosystems critically rely on the relationship between coral hosts and their intracellular photosynthetic dinoflagellates, but the role of the associated bacteria remains largely theoretical. Here, we set out to relate coral-associated bacterial communities of the fungid host species Ctenactis echinata to environmental settings (geographic location, substrate cover, summer/winter, nutrient and suspended matter concentrations) and coral host abundance. We show that bacterial diversity of C.echinata aligns with ecological differences between sites and that coral colonies sampled at the species' preferred habitats are primarily structured by one bacterial taxon (genus Endozoicomonas) representing more than 60% of all bacteria. In contrast, host microbiomes from lower populated coral habitats are less structured and more diverse. Our study demonstrates that the content and structure of the coral microbiome aligns with environmental differences and denotes habitat adequacy. Availability of a range of coral host habitats might be important for the conservation of distinct microbiome structures and diversity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-02-01
    Description: Background: Sponges (Porifera) harbor distinct microbial consortia within their mesohyl interior. We herein analysed the hologenomes of Stylissa carteri and Xestospongia testudinaria, which notably differ in their microbiome content. Results: Our analysis revealed that S. carteri has an expanded repertoire of immunological domains, specifically Scavenger Receptor Cysteine-Rich (SRCR) like domains, compared to X. testudinaria. On the microbial side, metatranscriptome analyses revealed an overrepresentation of potential symbiosis-related domains in X. testudinaria. Conclusions: Our findings provide genomic insights into the molecular mechanisms underlying host-symbiont coevolution and may serve as a roadmap for future hologenome analyses.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Wiley
    In:  In: Biofouling Methods. , ed. by Dobretsov, S., Williams, D. N. and Thomason, J. Wiley, New York, USA, pp. 93-113. ISBN 978-0-470-65985-4
    Publication Date: 2014-11-06
    Type: Book chapter , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-10-26
    Description: Experts release a roadmap for harnessing the potential of assisted evolution to help save corals. The IPCC predicts that if warming reaches 2°C, 99% of all coral reefs will be lost in less than 30 years. It is clear that to ensure the future of corals, the highest priority must be reducing global greenhouse gas emissions. However, even with swift and substantial reductions in emissions, corals will continue to face increasing temperatures for the foreseeable future, which can result in extensive coral mortality and local extinction of some coral species. While recent studies have shown that corals may exhibit some degree of adaptation to ocean warming, it is unclear whether corals are able to survive the rate of temperature change during heat waves that will become more frequent under several climate change scenarios. If corals lack what it takes to naturally rapidly adapt to new environmental regimes, they may fail to survive a warming ocean. This is where assisted evolution could be a game-changer. Growing our understanding of the power of adaptation In January 2023, we held a workshop on assisted evolution co-organized with the Australian Institute of Marine Sciences (AIMS) as part of CORDAP’s Scoping Studies (a series of planning sessions and technology roadmap studies to shape our funding priorities). Our aim was to develop a visionary roadmap, offering recommendations on how to prioritise assisted evolution in R&D investment in the future. Assisted evolution is the use of human interventions to speed up the natural evolutionary process. It may allow coral species to adapt faster than they would if left unaided, allowing reefs and corals to keep better pace with the ocean’s environmental changes. The first step in creating this strategy was to pinpoint where we are now in our understanding regarding the potential and impacts of assisted evolution on enhancing coral tolerance to stress conditions like ocean warming. Our experts unanimously agreed that assisted evolution methods cannot be understood and evaluated without a solid foundational understanding of natural adaptation, and identified some knowledge gaps that can be closed with relatively minimal effort and others that will require substantial investment of time and resources. Key Findings: - Standardising methods, experimental designs, species selection guidelines, and terminologies will help to understand natural adaptation and assisted evolution more rapidly. - Long-term funding is critical to facilitate multigenerational studies, which are needed to deliver essential but largely missing information about coral evolution. Building the best pathway for research and investment This roadmap sets out tangible recommendations for future investment and research, to help fill critical knowledge gaps that could assist natural adaptation and evolution of coral reefs in a warming world. Overall, the roadmap recommends investment in a mixed portfolio of R&D, ranging from technologies with lower perceived risks to those with higher percieved risks and longer R&D horizons. This strategy is advised because of the uncertainty around future heating trajectories and thus requirements for enhancement of tolerance. The roadmap outlined four main areas of work that need to be undertaken: 1. Leading global coordination and synthesis. Recommendation: Building global infrastructure to support research would dramatically accelerate the generation of knowledge around the natural and assisted evolution of corals. This could include compiling and committing to a set of standards and methods that will allow more studies to be used in predictive models, as well as establishing a global resource-sharing network and database to facilitate meta-analysis and synthesis. 2. Optimising generation and use of knowledge. Recommendation: Make sure new studies are well designed and timely. Optimize published and future studies by characterizing relationships between heat stress metrics and other facets of coral fitness. Having funding set aside to be able to quickly respond to bleaching events will ensure vital knowledge is captured rather than lost if and when those events occur. 3. Filling critical knowledge gaps in multigenerational coral data in the laboratory and field. Recommendation: Given the slow-growing nature of coral, longer-term funding would allow researchers to gain critical knowledge needed to estimate the multi-generational benefits and risks of implementing assisted evolution methods in the wild. Standardised approaches repeated in different parts of the world would add confidence to generalise those results. 4. Supporting the advance of existing and new technologies. Recommendation: Methods that may yield a larger effect (e.g., gene editing, hybridisation between species, and assisted migration) are also potentially of greater risk and would need considerable R&D. Expanding support for some of the riskier long-term projects currently being overlooked, could potentially offer a greater return on investment, but should be balanced with continued investment in less risky technologies. CORDAP will be using these recommendations to prepare new accelerator program and we believe that they will assist academia in understanding gaps and needs for future research as well as helping to guide funding agencies on where their money will be most effective. The roadmap identifies the funding structures and research priorities that are most likely to yield the knowledge needed to ensure that assisted evolution methods can be implemented effectively. Ultimately, conserving and restoring coral reefs in warming climates will require an inclusive infrastructure involving many partners at a local, national, and international level.
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-06-19
    Description: Background: The high prevalence of women that do not reach the recommended level of physical activity is worrisome. A sedentary lifestyle has negative consequences on health status and increases health care costs. The main objective of this project is to assess the cost-effectiveness of a primary care-based exercise intervention in perimenopausal women.Methods/DesignThe present study is a Randomized Controlled Trial.A total of 150 eligible women will be recruited and randomly assigned to either a 16-week exercise intervention (3 sessions/week), or to usual care (control) group.The primary outcome measure is the incremental cost-effectiveness ratio. The secondary outcome measures are: i) socio-demographic and clinical information; ii) body composition; iii) dietary patterns; iv) glycaemic and lipid profile; v) physical fitness; vi) physical activity and sedentary behaviour; vii) sleep quality; viii) quality of life, mental health and positive health; ix) menopause symptoms. All outcomes will be assessed at baseline and post intervention. The data will be analysed on an intention-to-treat basis and per protocol. In addition, we will conduct a cost effectiveness analysis from a health system perspective.DiscussionThe intervention designed is feasible and if it proves to be clinically and cost effective, it can be easily transferred to other similar contexts. Consequently, the findings of this project might help the Health Systems to identify strategies for primary prevention and health promotion as well as to reduce health care requirements and costs.Trial registrationClinicalTrials.gov Identifier: NCT02358109. Date of registration: 05/02/2015
    Electronic ISSN: 1471-2458
    Topics: Medicine
    Published by BioMed Central
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-11-24
    Description: Prospective multicenter real-world RAS mutation comparison between OncoBEAM-based liquid biopsy and tissue analysis in metastatic colorectal cancer Prospective multicenter real-world 〈i〉RAS〈/i〉 mutation comparison between OncoBEAM-based liquid biopsy and tissue analysis in metastatic colorectal cancer, Published online: 23 November 2018; doi:10.1038/s41416-018-0293-5 Prospective multicenter real-world RAS mutation comparison between OncoBEAM-based liquid biopsy and tissue analysis in metastatic colorectal cancer
    Print ISSN: 0007-0920
    Electronic ISSN: 1532-1827
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...