GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Years
  • 1
    facet.materialart.
    Unknown
    American Society of Limnology and Oceanography
    In:  Limnology and Oceanography: Methods, 15 (9). pp. 753-765.
    Publication Date: 2020-02-06
    Description: Coral epithelia control ion fluxes to the calcification site influencing biomineralization and proxy incorporation. However, data on in vivo characteristics of coral tissue such as permeability, selectivity, and active ion transport are scarce but important for calcification and proxy modeling. To investigate ion permeability and ion fluxes across coral tissues in vivo, we developed an electrophysiological approach for the assessment of active and passive epithelial transport properties. Growing Stylophora pistillata corals in a thin layer over permeable filters allowed ion exchange at the site of skeleton formation for reproducible measurements of electrophysiological properties of coral tissues in a modified Ussing chamber. Compared to former applications, electrical measurements on these coral filter units were dominated by tissue characteristics with minimal influence of skeleton or physical stress. Coral tissues were cation selective. Their overall high electrical resistance characterized them as tight epithelia indicating low paracellular permeability for passive ion diffusion. This includes ions relevant for calcification. A small short-circuit current indicates active charge transport across the entire coral tissue. The present approach is applicable to corals laterally overgrowing substrates. It allows the electrophysiological characterization of coral tissue in vivo in response to environmental conditions. This will improve our knowledge on transepithelial transport relevant for biomineralization in corals.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Rodolfo-Metalpa, Riccardo; Houlbrèque, Fanny; Tambutté, Eric; Boisson, Florence; Baggini, Cecilia; Patti, F P; Jeffree, Ross; Fine, M; Foggo, A; Gattuso, Jean-Pierre; Hall-Spencer, Jason M (2011): Coral and mollusc resistance to ocean acidification adversely affected by warming. Nature Climate Change, 1, 308-312, https://doi.org/10.1038/nclimate1200
    Publication Date: 2024-01-13
    Description: Increasing atmospheric carbon dioxide (CO2) concentrations are expectedto decrease surface ocean pH by 0.3-0.5 units by 2100, lowering the carbonate ion concentration of surfacewaters. This rapid acidification is predicted to dramatically decrease calcification in many marine organisms. Reduced skeletal growth under increased CO2 levels has already been shown for corals, molluscs and many other marine organisms. The impact of acidification on the ability of individual species to calcify has remained elusive, however, as measuring net calcification fails to disentangle the relative contributions of gross calcification and dissolution rates on growth. Here, we show that corals and molluscs transplanted along gradients of carbonate saturation state at Mediterranean CO2 vents are able to calcify and grow at even faster than normal rates when exposed to the high CO2 levels projected for the next 300 years. Calcifiers remain at risk, however, owing to the dissolution of exposed shells and skeletons that occurs as pH levels fall. Our results show that tissues and external organic layers play a major role in protecting shells and skeletons from corrosive sea water, limiting dissolution and allowing organisms to calcify. Our combined field and laboratory results demonstrate that the adverse effects of global warming are exacerbated when high temperatures coincide with acidification.
    Keywords: Animalia; Balanophyllia europaea; Benthic animals; Benthos; Calcification/Dissolution; Cladocora caespitosa; Cnidaria; CO2 vent; Coast and continental shelf; EPOCA; EUR-OCEANS; European network of excellence for Ocean Ecosystems Analysis; European Project on Ocean Acidification; Field experiment; Growth/Morphology; Mediterranean Sea; Mediterranean Sea Acidification in a Changing Climate; MedSeA; Mollusca; Mytilus galloprovincialis; OA-ICC; Ocean Acidification International Coordination Centre; Patella caerulea; Single species; Temperate; Temperature
    Type: Dataset
    Format: application/zip, 7 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-01-13
    Description: Internal pH measurements made in the extracellular calcifying medium (ECM), calcifying (calicoblastic) epithelium and mesoglea of the coral Stylophora pistillata using the fluorescent dye SNARF-1 and confocal microscopy. The measurements were made in light and darkness three experiments. Experiment 1 involved using coral samples maintained at pH 8 seawater. Experiment 2 involved placing samples in 4 seawater acidification conditions: pH 8, 7.8, 7.4 and 7.2 for 1 week. Experiment 3 involved placing samples in 4 levels of dissolved inorganic carbon concentration: elevated; ambient, low and very low for one week. The research was carried out at the Centre Scientifique de Monaco between 2014-2017. The aim of the experiment was to determine the pH gradient across the calcifying cell layer and determine how it responded to the three experiments.
    Keywords: biomineralization; Climate change; Comment; Confocal Microscope, Leica, SP5; EXP; Experiment; Experiment/study setup; Laboratory experiment; Laboratory-experiments; pH; pH, extracellular; pH, extracellular, standard deviation; pH, intracellular; pH, intracellular, standard deviation; pH, mesoglea; pH, mesoglea, standard deviation; pH, standard deviation; pH regulation; physiology; Salinity; scleractinians; Species, unique identification; Species, unique identification (Semantic URI); Species, unique identification (URI); Temperature, water; Thermometer; Treatment
    Type: Dataset
    Format: text/tab-separated-values, 201 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-01-13
    Description: Half-time of calcein influx was measured in the coral Stylophora pistillata as a method to investigate paracellular transport. To calculate half-life of calcein influx, time lapses of calcein influx into the extracellular calcifying medium was captured using confocal microscopy. The time lapse data set associated with figure 2 was recorded at 25 degrees in a seawater pH of 8. The study was carried on microcolonies of S. pistillata on glass coverslips. The study was conducted the Centre Scientifque de Monaco between 2016 and 2019.
    Keywords: Calcein; Calcein-influx_experiments; EXP; Experiment; Fluorescence intensity; Parcaellular transport; Time in minutes
    Type: Dataset
    Format: text/tab-separated-values, 46 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-01-13
    Keywords: Alkalinity, Gran titration (Gran, 1950); Alkalinity, total; Aragonite saturation state; Balanophyllia europaea; Bicarbonate ion; Calcite saturation state; Calculated using CO2SYS; Carbon, inorganic, dissolved; Carbonate ion; Carbon dioxide; Cladocora caespitosa; CO2 vent; Coast and continental shelf; DATE/TIME; EPOCA; EUR-OCEANS; European network of excellence for Ocean Ecosystems Analysis; European Project on Ocean Acidification; Field experiment; Identification; LATITUDE; LONGITUDE; Measured; Mediterranean Sea Acidification in a Changing Climate; MedSeA; Mytilus galloprovincialis; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Patella caerulea; pH; Salinity; Site; Temperate; Temperature; Temperature, water
    Type: Dataset
    Format: text/tab-separated-values, 2206 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-01-20
    Description: Coastal marine ecosystems experience dynamic fluctuations in seawater carbonate chemistry. The importance of this variation in the context of ocean acidification requires knowing what aspect of variability biological processes respond to. We conducted four experiments (ranging from 3 to 22 days) with different variability regimes (pHT 7.4–8.1) assessing the impact of diel fluctuations in carbonate chemistry on the early development of the mussel Mytilus galloprovincialis. Larval shell growth was consistently correlated to mean exposures, regardless of variability regimes, indicating that calcification responds instantaneously to seawater chemistry. Larval development was impacted by timing of exposure, revealing sensitivity of two developmental processes: development of the shell field, and transition from the first to the second larval shell. Fluorescent staining revealed developmental delay of the shell field at low pH, and abnormal development thereof was correlated with hinge defects in D-veligers. This study shows, for the first time, that ocean acidification affects larval soft-tissue development, independent from calcification. Multiple developmental processes additively underpin the teratogenic effect of ocean acidification on bivalve larvae. These results explain why trochophores are the most sensitive life-history stage in marine bivalves and suggest that short-term variability in carbonate chemistry can impact early larval development.
    Keywords: Animalia; Calcification/Dissolution; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); Development; Growth/Morphology; Laboratory experiment; Mediterranean Sea; Mollusca; Mytilus galloprovincialis; OA-ICC; Ocean Acidification International Coordination Centre; Other; Pelagos; Single species; Temperate; Zooplankton
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-03-15
    Description: Coral reefs are constructed by calcifiers that precipitate calcium carbonate to build their shells or skeletons through the process of calcification. Accurately assessing coral calcification rates is crucial to determine the health of these ecosystems and their response to major environmental changes such as ocean warming and acidification. Several approaches have been used to assess rates of coral calcification but there is a real need to compare these approaches in order to ascertain that high quality and intercomparable results can be produced. Here, we assessed four methods (total alkalinity anomaly, calcium anomaly, 45Ca incorporation and 13C incorporation) to determine coral calcification of the reef-building coral Stylophora pistillata. Given the importance of environmental conditions on this process, the study was performed under two pH (ambient and low level) and two light (light and dark) conditions. Under all conditions, calcification rates estimated using the alkalinity and calcium anomaly techniques as well as 45Ca incorporation were highly correlated. Such a strong correlation between the alkalinity anomaly and 45Ca incorporation techniques has not been observed in previous studies and most probably results from improvements described in the present paper. The only method which provided calcification rates significantly different from the other three techniques was 13C incorporation. Calcification rates based on this method were consistently higher than those measured using the other techniques. Although reasons for these discrepancies remain unclear, the use of this technique for assessing calcification rates in corals is not recommended without further investigations.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Aragonite saturation state, standard deviation; Benthic animals; Bicarbonate ion; Bicarbonate ion, standard deviation; Bottles or small containers/Aquaria (〈20 L); Calcification/Dissolution; Calcification rate, standard error; Calcification rate of calcium carbonate; Calcite saturation state; Calcite saturation state, standard deviation; Calcium; Calcium-45 activity; Calcium-45 activity, standard deviation; Calcium ion, standard deviation; Calculated using seacarb after Nisumaa et al. (2010); Calculated using seacarb after Orr et al. (2018); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, standard deviation; Cnidaria; Date/time end; Date/time start; Dry mass; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Fugacity of carbon dioxide in seawater, standard deviation; Identification; Incubation duration; Laboratory experiment; Laboratory strains; Light; Mass; Not applicable; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Potentiometric; Potentiometric titration; Registration number of species; Salinity; Single species; Size; Species; Stylophora pistillata; Temperature, water; Temperature, water, standard deviation; Treatment; Type; Uniform resource locator/link to reference; δ13C; δ13C, standard deviation
    Type: Dataset
    Format: text/tab-separated-values, 2610 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-03-15
    Description: Coral calcification relies on the transport of ions and molecules to the extracellular calcifying medium (ECM). Little is known about paracellular transport (via intercellular junctions) in corals and other marine calcifiers. Here, we investigated whether the permeability of the paracellular pathway varied in different environmental conditions in the coral Stylophora pistillata. Using the fluorescent dye calcein, we characterised the dynamics of calcein influx from seawater to the ECM and showed that increases in paracellular permeability (leakiness) induced by hyperosmotic treatment could be detected by changes in calcein influx rates. We then used the calcein-imaging approach to investigate the effects of two environmental stressors on paracellular permeability: seawater acidification and temperature change. Under conditions of seawater acidification (pH 7.2) known to depress pH in the ECM and the calcifying cells of S. pistillata, we observed a decrease in half-times of calcein influx, indicating increased paracellular permeability. By contrast, high temperature (31°C) had no effect, whereas low temperature (20°C) caused decreases in paracellular permeability. Overall, our study establishes an approach to conduct further in vivo investigation of paracellular transport and suggests that changes in paracellular permeability could form an uncharacterised aspect of the physiological response of S. pistillata to seawater acidification.
    Keywords: Acid-base regulation; Alkalinity, total; Animalia; Aragonite saturation state; Benthic animals; Benthos; Bicarbonate ion; Calcification/Dissolution; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cnidaria; Comment; Containers and aquaria (20-1000 L or 〈 1 m**2); Distance; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Laboratory experiment; Laboratory strains; Not applicable; OA-ICC; Ocean Acidification International Coordination Centre; Other studied parameter or process; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, extracellular; pH, intracellular; Potentiometric titration; Registration number of species; Salinity; Single species; Species; Spectrophotometric; Stylophora pistillata; Temperature, water; Time in minutes; Treatment; Type; Uniform resource locator/link to reference
    Type: Dataset
    Format: text/tab-separated-values, 751 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-03-15
    Description: Ocean warming and ocean acidification (OA) are direct consequences of climate change and affect coral reefs worldwide. While the effect of ocean warming manifests itself in increased frequency and severity of coral bleaching, the effects of ocean acidification on corals are less clear. In particular, long-term effects of OA on the bacterial communities associated with corals are largely unknown. In this study, we investigated the effects of ocean acidification on the resident and active microbiome of long-term aquaria-maintained Stylophora pistillata colonies by assessing 16S rRNA gene diversity on the DNA (resident community) and RNA level (active community). Coral colony fragments of S. pistillata were kept in aquaria for 2 years at four different pCO2 levels ranging from current pH conditions to increased acidification scenarios (i.e., pH 7.2, 7.4, 7.8, and 8). We identified 154 bacterial families encompassing 2,047 taxa (OTUs) in the resident and 89 bacterial families including 1,659 OTUs in the active communities. Resident communities were dominated by members of Alteromonadaceae, Flavobacteriaceae, and Colwelliaceae, while active communities were dominated by families Cyclobacteriacea and Amoebophilaceae. Besides the overall differences between resident and active community composition, significant differences were seen between the control (pH 8) and the two lower pH treatments (7.2 and 7.4) in the active community, but only between pH 8 and 7.2 in the resident community. Our analyses revealed profound differences between the resident and active microbial communities, and we found that OA exerted stronger effects on the active community. Further, our results suggest that rDNA- and rRNA-based sequencing should be considered complementary tools to investigate the effects of environmental change on microbial assemblage structure and activity.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Aragonite saturation state, standard deviation; Benthos; Bicarbonate ion; Bicarbonate ion, standard deviation; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Chao 1 richness; Chao 1 richness, standard deviation; Chao 1 richness, standard error; Community composition and diversity; Containers and aquaria (20-1000 L or 〈 1 m**2); Entire community; Evenness of species; Evenness of species, standard deviation; Evenness of species, standard error; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Laboratory experiment; Laboratory strains; Not applicable; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Rocky-shore community; Salinity; Shannon Diversity Index; Shannon Diversity Index, standard deviation; Shannon Diversity index, standard error; Temperature, water; Treatment; Type
    Type: Dataset
    Format: text/tab-separated-values, 180 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-03-15
    Description: There are increasing concerns that the current rate of climate change might outpace the ability of reef-building corals to adapt to future conditions. Work on model systems has shown that environmentally induced alterations in DNA methylation can lead to phenotypic acclimatization. While DNA methylation has been reported in corals and is thought to associate with phenotypic plasticity, potential mechanisms linked to changes in whole-genome methylation have yet to be elucidated. We show that DNA methylation significantly reduces spurious transcription in the coral Stylophora pistillata. Furthermore, we find that DNA methylation also reduces transcriptional noise by fine-tuning the expression of highly expressed genes. Analysis of DNA methylation patterns of corals subjected to long-term pH stress showed widespread changes in pathways regulating cell cycle and body size. Correspondingly, we found significant increases in cell and polyp sizes that resulted in more porous skeletons, supporting the hypothesis that linear extension rates are maintained under conditions of reduced calcification. These findings suggest an epigenetic component in phenotypic acclimatization that provides corals with an additional mechanism to cope with environmental change.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Aragonite saturation state, standard deviation; Benthic animals; Benthos; Bicarbonate ion; Bicarbonate ion, standard deviation; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Calyx size; Calyx size, standard error; Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Cell size; Cell size, standard error; Cnidaria; Containers and aquaria (20-1000 L or 〈 1 m**2); Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Laboratory experiment; Laboratory strains; Not applicable; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Potentiometric titration; Salinity; Single species; Skeletal porosity; Skeletal porosity, standard error; Species, unique identification; Species, unique identification (Semantic URI); Species, unique identification (URI); Spectrophotometric; Stylophora pistillata; Temperature, water; Treatment; Type of study
    Type: Dataset
    Format: text/tab-separated-values, 68 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...