GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Keywords
Language
  • 1
    In: International journal of earth sciences, Berlin : Springer, 1999, (2008), 1437-3262
    In: year:2008
    In: extent:14
    Type of Medium: Online Resource
    Pages: 14 , graph. Darst
    ISSN: 1437-3262
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: International journal of earth sciences, Berlin : Springer, 1999, (2008), 1437-3262
    In: year:2008
    In: extent:13
    Description / Table of Contents: New geochemical data from the Cocos Plate constrain the composition of the input into the Central American subduction zone and demonstrate the extent of influence of the Galaṕagos Hotspot on the Cocos Plate. Samples include sediments and basalts from Ocean Drilling Program (ODP) Site 1256 outboard of Nicaragua, gabbroic sills from ODP Sites 1039 and 1040, tholeiitic glasses from the Fisher Ridge off northwest Costa Rica, and basalts from the Galaṕagos Hotspot Track outboard of Central Costa Rica. Site 1256 basalts range from normal to enriched MORB in incompatible elements and have Pb and Nd isotopic compositions within the East Pacific Rise MORB field. The sediments have similar 206 Pb/204 Pb and only slightly more radiogenic 207 Pb/204 Pb and 208 Pb/204 Pb isotope ratios than the basalts. Altered samples from the subducting Galaṕagos Hotspot Track have similar Nd and Pb isotopic compositions to fresh Galaṕagos samples but have significantly higher Sr isotopic composition, indicating that the subduction input will have a distinct geochemical signature from Galaṕagos-type mantle material that may be present in the wedge beneath Costa Rica. Gabbroic sills from Sites 1039 and 1040 in East Pacific Rise (EPR) crust show evidence for influence of the Galaṕagos Hotspot ~100 km beyond the morphological hotspot track.
    Type of Medium: Online Resource
    Pages: 13 , graph. Darst
    ISSN: 1437-3262
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Earth and planetary science letters, Amsterdam [u.a.] : Elsevier, 1966, 287(2009), 3/4, Seite 324-336, 1385-013X
    In: volume:287
    In: year:2009
    In: number:3/4
    In: pages:324-336
    Type of Medium: Online Resource
    Pages: graph. Darst
    ISSN: 1385-013X
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Paleoceanography, Hoboken, NJ : Wiley, 1986, 23(2008), 1944-9186
    In: volume:23
    In: year:2008
    In: extent:12
    Description / Table of Contents: The upper 200 m of the sediments recovered during IODP Leg 302, the Arctic Coring Expedition (ACEX), to the Lomonosov Ridge in the central Arctic Ocean consist almost exclusively of detrital material. The scarcity of biostratigraphic markers severely complicates the establishment of a reliable chronostratigraphic framework for these sediments, which contain the first continuous record of the Neogene environmental and climatic evolution of the Arctic region. Here we present profiles of cosmogenic 10Be together with the seawater-derived fraction of stable 9Be obtained from the ACEX cores. The down-core decrease of 10Be/9Be provides an average sedimentation rate of 14.5 ± 1 m/Ma for the uppermost 151 m of the ACEX record and allows the establishment of a chronostratigraphy for the past 12.3 Ma. The age-corrected 10Be concentrations and 10Be/9Be ratios suggest the existence of an essentially continuous sea ice cover over the past 12.3 Ma.
    Type of Medium: Online Resource
    Pages: 12
    ISSN: 1944-9186
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Geology, Melville, NY : American Institute of Physics, 1973, 37(2009), 9, Seite 811-814, 1943-2682
    In: volume:37
    In: year:2009
    In: number:9
    In: pages:811-814
    Type of Medium: Online Resource
    Pages: graph. Darst
    ISSN: 1943-2682
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract  Mohns Ridge lavas between 71 and 72°30′N (∼360 km) have heterogeneous compositions varying between alkali basalts and incompatible-element-depleted tholeiites. On a large scale there is a continuity of incompatible element and isotopic compositions between the alkali basalts from the island Jan Mayen and Mohns Ridge tholeiites. The variation in isotopes suggests a heterogeneous mantle which appears to be tapped preferentially by low degree melts (∼5%) close to Jan Mayen but also shows its signature much further north on Mohns Ridge. Three lava types with different incompatible element compositions [e.g. chondrite-normalized (La/Sm)N〈1 to 〉2] occur in the area at 72°N and were generated from this heterogeneous mantle. The relatively depleted tholeiitic melts were mixed with a small degree melt from an enriched source. The elements Ba, Rb and K of the enriched melt were probably buffered in the mantle by residual amphibole or phlogopite. That such a residual phase is stable in this region of oceanic mantle suggests both high water contents and low mantle temperatures, at odds with a hotspot origin for Jan Mayen. Instead we suggest that the melting may be induced by the lowered solidus temperature of a “wet” mantle. Mohns MORB (mid ocean ridge basalt) and Jan Mayen area alkali basalts have high contents of Ba and Rb compared to other incompatible elements (e.g. Ba/La 〉10). These ratios reflect the signature of the mantle source. Ratios of Ce/Pb and Rb/Cs are normal MORB mantle ratios of 25 and 80, respectively, thus the enrichments of Ba and Rb are not indicative of a sedimentary component added to the mantle source but were probably generated by the influence of a metasomatizing fluid, as supported by the presence of hydrous phases during the petrogenesis of the alkali basalts. Geophysical and petrological models suggest that Jan Mayen is not the product of hotspot activity above a mantle plume, and suggest instead that it owes its existence to the unique juxtaposition of a continental fragment, a fracture zone and a spreading axis in this part of the North Atlantic.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-0581
    Keywords: Petrology ; structure ; volcanism ; microplate
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The Easter microplate-Crough Seamount region located between 25° S–116° W and 25° S–122° W consists of a chain of seamounts forming isolated volcanoes and elongated (100–200 km in length) en echelon volcanic ridges oriented obliquely NE (N 065°), to the present day general spreading direction (N 100°) of the Pacific-Nazca plates. The extension of this seamount chain into the southwestern edge of the Easter microplate near 26°30′ S–115° W was surveyed and sampled. The southern boundary including the Orongo fracture zone and other shallow ridges (〈 2000 m high) bounding the Southwest Rift of the microplate consists of fault scarps where pillow lava, dolerite, and metabasalts are exposed. The degree of rock alternation inferred from palagonitization of glassy margins suggests that the volcanic ridges are as old as the shallow ridges bounding the Southwest Rift of the microplate. The volcanics found on the various structures west of the microplate consist of depleted (K/Ti 〈 0.1), transitional (K/Ti = 0.11−0.25) and enriched (K/Ti 〉 0.25) MORBs which are similar in composition to other more recent basalts from the Southwest and East Rifts spreading axes of the Easter microplate. Incompatible element ratios normalized to chondrite values [(Ce/Yb)N = 1−2.5}, {(La/Sm)N = 0.4−1.2} and {(Zr/Y)N = 0.7−2.5} of the basalts are also similar to present day volcanism found in the Easter microplate. The volcanics from the Easter microplate-Crough region are unrelated to other known South Pacific intraplate magmatism (i.e. Society, Pitcairn, and Salas y Gomez Islands). Instead their range in incompatible element ratios is comparable to the submarine basalts from the recently investigated Ahu and Umu volcanic field (Easter hotspot) (Scientific Party SO80, 1993) and centered at about 80 km west of Easter Island. The oblique ridges and their associated seamounts are likely to represent ancient leaky transform faults created during the initial stage of the Easter microplate formation (≈ 5 Ma). It appears that volcanic activity on seamounts overlying the oblique volcanic ridges has continued during their westward drift from the microplate as shown by the presence of relatively fresh lava observed on one of these structures, namely the first Oblique Volcanic Ridge near 25° S–118° W at about 160 km west of the Easter microplate West Rift. Based on a reconstruction of the Easter microplate, it is suggested that the Crough seamount (〈 800 m depth) was formed by earlier (7–10 Ma) hotspot magmatic activity which also created Easter Island.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-02-06
    Description: The western Indian Ocean has been warming faster than any other tropical ocean during the 20th century, and is the largest contributor to the global mean sea surface temperature (SST) rise. However, the temporal pattern of Indian Ocean warming is poorly constrained and depends on the historical SST product. As all SST products are derived from the International Comprehensive Ocean-Atmosphere dataset (ICOADS), it is challenging to evaluate which product is superior. Here, we present a new, independent SST reconstruction from a set of Porites coral geochemical records from the western Indian Ocean. Our coral reconstruction shows that the World War II bias in the historical sea surface temperature record is the main reason for the differences between the SST products, and affects western Indian Ocean and global mean temperature trends. The 20th century Indian Ocean warming pattern portrayed by the corals is consistent with the SST product from the Hadley Centre (HadSST3), and suggests that the latter should be used in climate studies that include Indian Ocean SSTs. Our data shows that multi-core coral temperature reconstructions help to evaluate the SST products. Proxy records can provide estimates of 20th century SST that are truly independent from the ICOADS data base.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-02-08
    Description: Highlights • First comprehensive data set of the seamounts from the Walvis Ridge. • The seamounts are 20–40 Myr younger than the age progressive Walvis Ridge basement. • The composition of the seamounts extends from the St. Helena HIMU to EMORB. • The seamounts are derived from a distinct source compared to the Walvis Ridge. • The temporal change from EM I to HIMU could reflect the compositional heterogeneities of the LLSVP. Abstract Volcanic activity at many oceanic volcanoes, ridges and plateaus often reawakens after hiatuses of up to several million years. Compared to the earlier magmatic phases, this late-stage (rejuvenated/post-erosional) volcanism is commonly characterized by a distinct geochemical composition. Late-stage volcanism raises two hitherto unanswered questions: Why does volcanism restart after an extended hiatus and what is the origin of this volcanism? Here we present the first 40Ar/39Ar age and comprehensive trace element and Sr–Nd–Pb–Hf isotopic data from seamounts located on and adjacent to the Walvis Ridge in the South Atlantic ocean basin. The Walvis Ridge is the oldest submarine part of the Tristan-Gough hotspot track and is famous as the original type locality for the enriched mantle one (EM I) end member. Consistent with the bathymetric data, the age data indicates that most of these seamounts are 20–40 Myr younger than the underlying or nearby Walvis Ridge basement. The trace element and isotope data reveal a distinct compositional range from the EM I-type basement. The composition of the seamounts extend from the St. Helena HIMU (high time-integrated 238U/204Pb mantle with radiogenic Pb isotope ratios) end member to an enriched (E) Mid-Ocean-Ridge Basalt (MORB) type composition, reflecting a two-component mixing trend on all isotope diagrams. The EMORB end member could have been generated through mixing of Walvis Ridge EM I with normal (N) MORB source mantle, reflecting interaction of Tristan-Gough (EM I-type) plume melts with the upper mantle. The long volcanic quiescence and the HIMU-like geochemical signature of the seamounts are unusual for classical hotspot related late-stage volcanism, indicating that these seamounts are not related to the Tristan-Gough hotspot volcanism. Two volcanic arrays in southwestern Africa (Gibeon-Dicker Willem and Western Cape province) display similar ages to the late-stage Walvis seamounts and also have HIMU-like compositions, suggesting a larger-scale event at ∼77–49 Ma. We propose that the EM I-like mantle plumes rise from the edges of the African Large Low Shear Velocity Province (LLSVP; Tristan-Gough, Discovery and Shona hotspot), whereas the HIMU-dominated intraplate lavas (St. Helena, Gibeon-Dicker Willem and Western Cape province) and the late-stage Walvis seamounts tap material from internal portions of the African LLSVP, suggesting possible lateral and/or vertical chemical zonation of the African LLSVP.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Format: other
    Format: other
    Format: other
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-02-08
    Description: The 541 ± 4 Ma-old magnesian, weakly peraluminous, calc-alkalic Donkerhoek Onanis granite is part of the ca. 6000 km2 large Donkerhoek batholith in the Southern Zone of the Damara orogen of Namibia. Linear major and trace element variations and decreasing MgO, FeO, Al2O3, CaO, K2O, Na2O, Ba and Sr concentrations with increasing SiO2 indicate that this part of the batholith represent a coherent mass and underwent fractional crystallization processes. The Donkerhoek Onanis granites are isotopically evolved (initial εNd: −4.7 to −12.3, initial 87Sr/86Sr: 0.7099–0.7157) with moderately radiogenic Pb isotope ratios (206Pb/204Pb: 17.26–18.22; 207Pb/204Pb: 15.59–15.67; 208Pb/204Pb: 37.60–38.06). Beside heterogeneities imparted by the sources, an evaluation of LREE fractionation and Nd isotope data suggests that AFC processes also modified some samples. Based on the chemical and isotope data, the Donkerhoek Onanis granites cannot be derived by partial melting of Al- and Fe-rich metasedimentary rocks of the Kuiseb formation in which they intruded. Instead, melting of meta-igneous crustal sources with Proterozoic crustal residence ages is more likely. Three igneous to meta-igneous rock suites from the area (Matchless amphibolites, Proterozoic mafic to felsic gneisses from the southern Kalahari craton basement, syn-tectonic Salem granodiorites to granites) are potential sources. An evaluation of chemical and isotope data suggests that remelting of early syn-orogenic Salem-type granites is the most likely process which would also explain the existence of ca. 563 ± 4 Ma-old zircon in the Donkerhoek Onanis granites. Comparison of the Donkerhoek Onanis granites with experimentally derived melt compositions from an intermediate igneous parent indicates temperatures between 800 and 850 °C. It is suggested that the Pan-African igneous activity in this part of the Damara Belt was a moderate-temperature intra-crustal event. Although there are some compositional similarities with juvenile granites generated in subduction zones, unradiogenic Pb isotope ratios and moderately radiogenic Sr and unradiogenic Nd isotopes suggest that reprocessed crustal rocks are more likely sources. Previously obtained high δ18O values of the Donkerhoek Onanis granites ranging from 11.8 to 13.6‰, covering the range of δ18O values obtained on Salem-type granites from the area (12.5–13.3‰) confirm this view. In contrast to igneous processes along active continental margins that produce juvenile batholiths with calc-alkaline affinities, this igneous event was not a major crust-forming episode and the Donkerhoek Onanis granites represent reprocessed crustal material.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...