GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2021-02-08
    Beschreibung: Over the last two decades, popular opinion about prevailing conditions in the mid-Proterozoic deep ocean has evolved from fully oxygenated to globally euxinic (sulfidic) to a more heterogeneous, stratified water column with localized pockets of euxinia existing in predominantly iron-rich (ferruginous) deep waters. The Animikie Basin in theL ake Superior region has been essential in shaping our view of marine redox evolution over this time period. In this study, we present a multi-proxy paleoredox investigation of previously unanalyzed strata of the late Paleoproterozoic AnimikieB asin using drill cores through the -1.85 Ga Stambaugh Formation (PaintR iver Group) in the Iron River-Crystal Falls district of the Upper Peninsula of Michigan, USA. Based on previous tectonic reconstructions and analysis of sedimentary regimes, theI ronR iver-Crystal Falls section captures strata from among the deepest-water facies of the AnimikieB asin.I n contrast to previous work on sedimentary rocks in this basin, we find evidence from iron speciation, trace metal, and Mo isotope data for episodes of at least local deep-water oxygenation within a basin otherwise dominated by ferruginous and euxinic conditions. While tracemetal enrichments and iron speciation data suggest predominantly anoxic conditions, the occurrence of Mn-rich intervals (up to 12.3 wt% MnO) containing abundant Mn-Fe carbonate, and a wide range of Mo isotope data with extremely negative values (8 98195 Mo = -1.0 to + 1.1 %0), record the shuttling of Mn-oxides from surface waters through oxic or suboxic waters to the sediment-water interface. We propose that such conditions are analogous to those of locally restricted modern and Holocene basins in the Baltic Sea, which receive episodic inflow of oxygenated water, producing similar geochemical signatures to those observed for the AnimikieB asin. We argue that the mid-Proterozoic was characterized by a lack of a strong redox buffer (low sulfide, ferrous iron, and oxygen contents), and thus was vulnerable to dramatic, and at least local, redox shifts-including briefly oxygenated bottom waters. A refined view of the mid-Proterozoic ocean is emerging: one that was still predominantly anoxic, but marked by regional heterogeneities and short-term redox variability that may, in part, reflect a transitional state between prevailingly anoxic Archean and predominantly oxic Phanerozoic oceans.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2022-01-31
    Beschreibung: Inferring redox conditions for ancient marine environments is critical to our understanding of biogeochemical cycles over Earth history. Because of the redox sensitivity of cerium (Ce) relative to other rare earth elements (REEs) and its uptake in marine carbonates, the Ce anomaly (Ce/Ce*) is widely applied to ancient carbonates as a proxy for local redox conditions in the water column. However, carbonate sediments and rocks are particularly vulnerable to multiple stages and styles of post-depositional diagenetic alteration where the diagenetic redox conditions and fluid compositions can vary widely from overlying seawater. Evaluations of the effects of this post-depositional alteration for the Ce anomaly have mostly been limited to ancient carbonate rocks rather than recent, well-characterized analog facies. Here, we report on analyses of REE plus yttrium concentrations (REY) and Ce anomalies in bulk carbonate samples from drill cores collected in the Bahamas (Clino and Unda) that allow us to track loss or retention of primary signals of initial oxic deposition through a range of subsequent alteration scenarios mostly under anoxic conditions. Specifically, these materials have experienced well-constrained overprints linked to meteoric processes and marine burial diagenesis, including dolomitization. Our results show that, regardless of mineralogy, diagenetic fluid composition, and redox state, the REY patterns in these carbonates, including the Ce anomaly, are similar to those of modern oxic seawater, indicating that they likely record the seawater signatures of primary deposition. As such, the Ce anomaly in shallow marine carbonates has the potential to preserve records of primary deposition even when subject to multiple stages and styles of diagenetic alteration, confirming its utility in studies of ancient marine redox.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2024-02-23
    Beschreibung: Iodine cycling in the ocean is closely linked to productivity, organic carbon export, and oxygenation. However, iodine sources and sinks at the seafloor are poorly constrained, which limits the applicability of iodine as a biogeochemical tracer. We present pore water and solid phase iodine data for sediment cores from the Peruvian continental margin, which cover a range of bottom water oxygen concentrations, organic carbon rain rates and sedimentation rates. By applying a numerical reaction‐transport model, we evaluate how these parameters determine benthic iodine fluxes and sedimentary iodine‐to‐organic carbon ratios (I:C org ) in the paleo‐record. Iodine is delivered to the sediment with organic material and released into the pore water as iodide (I − ) during early diagenesis. Under anoxic conditions in the bottom water, most of the iodine delivered is recycled, which can explain the presence of excess dissolved iodine in near‐shore anoxic seawater. According to our model, the benthic I − efflux in anoxic areas is mainly determined by the organic carbon rain rate. Under oxic conditions, pore water dissolved I − is oxidized and precipitated at the sediment surface. Much of the precipitated iodine re‐dissolves during early diagenesis and only a fraction is buried. Particulate iodine burial efficiency and I:C org burial ratios do increase with bottom water oxygen. However, multiple combinations of bottom water oxygen, organic carbon rain rate and sedimentation rate can lead to identical I:C org , which limits the utility of I:C org as a quantitative oxygenation proxy. Our findings may help to better constrain the ocean's iodine mass balance, both today and in the geological past. Key Points The impact of early diagenesis on benthic iodine fluxes and iodine burial was quantitatively evaluated using a reaction‐transport model Dissolved iodine anomalies in the water column are indicative of benthic efflux from anoxic sediments with high organic carbon turnover Not only bottom water oxygen but also organic carbon delivery and sedimentation rate determine sedimentary iodine‐to‐organic carbon ratios
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2022-05-25
    Beschreibung: © The Author(s), 2017. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Earth and Planetary Science Letters 463 (2017): 159-170, doi:10.1016/j.epsl.2017.01.032.
    Beschreibung: The Proterozoic Eon hosted the emergence and initial recorded diversification of eukaryotes. Oxygen levels in the shallow marine settings critical to these events were lower than today’s, although how much lower is debated. Here, we use concentrations of iodate (the oxidized iodine species) in shallow-marine limestones and dolostones to generate the first comprehensive record of Proterozoic near-surface marine redox conditions. The iodine proxy is sensitive to both local oxygen availability and the relative proximity to anoxic waters. To assess the validity of our approach, Neogene-Quaternary carbonates are used to demonstrate that diagenesis most often decreases and is unlikely to increase carbonate-iodine contents. Despite the potential for diagenetic loss, maximum Proterozoic carbonate iodine levels are elevated relative to those of the Archean, particularly during the Lomagundi and Shuram carbon isotope excursions of the Paleo- and Neoproterozoic, respectively. For the Shuram anomaly, comparisons to Neogene-Quaternary carbonates suggest that diagenesis is not responsible for the observed iodine trends. The baseline low iodine levels in Proterozoic carbonates, relative to the Phanerozoic, are linked to a shallow oxic-anoxic interface. Oxygen concentrations in surface waters would have at least intermittently been above the threshold required to support eukaryotes. However, the diagnostically low iodine data from mid-Proterozoic shallow-water carbonates, relative to those of the bracketing time intervals, are consistent with a dynamic chemocline and anoxic waters that would have episodically mixed upward and laterally into the shallow oceans. This redox instability may have challenged early eukaryotic diversification and expansion, creating an evolutionary landscape unfavorable for the emergence of animals.
    Beschreibung: TL, ZL, and DH thank NSF EAR-1349252. ZL further thanks OCE-1232620. DH, ZL, and TL acknowledge further funding from a NASA Early Career Collaboration Award. TL, AB, NP, DH, and AK thank the NASA Astrobiology Institute. TL and NP received support from the Earth-Life Transitions Program of the NSF. AB acknowledges support from NSF grant EAR-05-45484 and an NSERC Discovery and Accelerator Grants. CW acknowledges support from NSFC grant 40972021.
    Schlagwort(e): Proterozoic oxygen ; Shuram isotope anomaly ; Carbonate diagenesis ; Bahamas ; Iodine ; Metazoan evolution
    Repository-Name: Woods Hole Open Access Server
    Materialart: Preprint
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 30 (2015): 510–526, doi:10.1002/2014PA002741.
    Beschreibung: Global warming lowers the solubility of gases in the ocean and drives an enhanced hydrological cycle with increased nutrient loads delivered to the oceans, leading to increases in organic production, the degradation of which causes a further decrease in dissolved oxygen. In extreme cases in the geological past, this trajectory has led to catastrophic marine oxygen depletion during the so-called oceanic anoxic events (OAEs). How the water column oscillated between generally oxic conditions and local/global anoxia remains a challenging question, exacerbated by a lack of sensitive redox proxies, especially for the suboxic window. To address this problem, we use bulk carbonate I/Ca to reconstruct subtle redox changes in the upper ocean water column at seven sites recording the Cretaceous OAE 2. In general, I/Ca ratios were relatively low preceding and during the OAE interval, indicating deep suboxic or anoxic waters exchanging directly with near-surface waters. However, individual sites display a wide range of initial values and excursions in I/Ca through the OAE interval, reflecting the importance of local controls and suggesting a high spatial variability in redox state. Both I/Ca and an Earth System Model suggest that the northeast proto-Atlantic had notably higher oxygen levels in the upper water column than the rest of the North Atlantic, indicating that anoxia was not global during OAE 2 and that important regional differences in redox conditions existed. A lack of correlation with calcium, lithium, and carbon isotope records suggests that neither enhanced global weathering nor carbon burial was a dominant control on the I/Ca proxy during OAE 2.
    Beschreibung: Z.L. thanks NSF OCE 1232620. J.D.O. is supported by an Agouron Postdoctoral Fellowship. T.W.L. acknowledges support from the NSF-EAR and NASA-NAI. A.R. thanks the support of NERC via NE/J01043X/1.
    Beschreibung: 2015-11-13
    Schlagwort(e): I/Ca ; OAE 2 ; Oxygenation
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2022-05-25
    Beschreibung: © The Author(s), 2017. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Earth-Science Reviews 172 (2017): 140-177, doi:10.1016/j.earscirev.2017.06.012.
    Beschreibung: Iron formations (IF) represent an iron-rich rock type that typifies many Archaean and Proterozoic supracrustal successions and are chemical archives of Precambrian seawater chemistry and postdepositional iron cycling. Given that IF accumulated on the seafloor for over two billion years of Earth’s early history, changes in their chemical, mineralogical, and isotopic compositions offer a unique glimpse into environmental changes that took place on the evolving Earth. Perhaps one of the most significant events was the transition from an anoxic planet to one where oxygen was persistently present within the marine water column and atmosphere. Linked to this progressive global oxygenation was the evolution of aerobic microbial metabolisms that fundamentally influenced continental weathering processes, the supply of nutrients to the oceans, and, ultimately, diversification of the biosphere and complex life forms. Many of the key recent innovations in understanding IF genesis are linked to geobiology, since biologically assisted Fe(II) oxidation, either directly through photoferrotrophy, or indirectly through oxygenic photosynthesis, provides a process for IF deposition from mineral precursors. The abundance and isotope composition of Fe(II)-bearing minerals in IF additionally suggests microbial Fe(III) reduction, a metabolism that is deeply rooted in the Archaea and Bacteria. Linkages among geobiology, hydrothermal systems, and deposition of IF have been traditionally overlooked, but now form a coherent model for this unique rock type. This paper reviews the defining features of IF and their distribution through the Neoarchaean and Palaeoproterozoic. This paper is an update of previous reviews by Bekker et al. (2010, 2014) that will improve the quantitative framework we use to interpret IF deposition. In this work, we also discuss how recent discoveries have provided new insights into the processes underpinning the global rise in atmospheric oxygen and the geochemical evolution of the oceans.
    Beschreibung: KOK, TJW, RH, CAP and AB would like to thank the Natural Sciences and Engineering Research Council of Canada (NSERC) for its financial support. LJR gratefully acknowledges the support of a Vanier Canada Graduate Scholarship. CMJ, DSH, NJP and TWL acknowledge support from the NASA Astrobiology Institute. SVL acknowledges support from the European Institute for Marine Studies (LabexMER, ANR-10-LABX-19). HT and PBHO thank ASSMANG Ltd for providing research funding.
    Repository-Name: Woods Hole Open Access Server
    Materialart: Preprint
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © The Author(s), 2016. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Geobiology 15 (2017): 211–224, doi:10.1111/gbi.12222.
    Beschreibung: Records of the Ediacaran carbon cycle (635 to 541 million years ago) include the Shuram excursion (SE), the largest negative carbonate-carbon isotope excursion in Earth history (down to -12 ‰). The nature of this excursion remains enigmatic given the difficulties of interpreting a perceived extreme global decrease in the δ13C of seawater dissolved inorganic carbon (DIC). Here, we present carbonate and organic carbon isotope (δ13Ccarb and δ13Corg) records from the Ediacaran Doushantuo Formation along a proximal-to-distal transect across the Yangtze Platform of South China as a test of the spatial variation of the SE. Contrary to expectations, our results show that the magnitude and morphology of this excursion and its relationship with coexisting δ13Corg are highly heterogeneous across the platform. Integrated geochemical, mineralogical, petrographic, and stratigraphic evidence indicates that the SE is a primary marine signature. Data compilations demonstrate that the SE was also accompanied globally by parallel negative shifts of δ34S of carbonate-associated sulfate (CAS) and increased 87Sr/86Sr ratio and coastal CAS concentration, suggesting elevated continental weathering and coastal marine sulfate concentration during the SE. In light of these observations, we propose a heterogeneous oxidation model to explain the high spatial heterogeneity of the SE and coexisting δ13Corg records of the Doushantuo, with likely relevance to the SE in other regions. In this model, we infer continued marine redox stratification through the SE but with increased availability of oxidants (e.g., O2 and sulfate) limited to marginal near-surface marine environments. Oxidation of limited spatiotemporal extent provides a mechanism to drive heterogeneous oxidation of subsurface reduced carbon mostly in shelf areas. Regardless of the mechanism driving the SE, future models must consider the evidence for spatial heterogeneity in δ13C presented in this study.
    Beschreibung: We thank the National Key Basic Research Program of China (Grant 2013CB955704) and the State Key R&D project of China (Grant 2016YFA060104) as well as the NSF-ELT program and the NASA Astrobiology Institute (TWL) for funding.
    Schlagwort(e): Ediacaran carbon cycle ; Doushantuo Formation ; Shuram excursion ; Spatial heterogeneity, ; Surface-ocean oxygenation
    Repository-Name: Woods Hole Open Access Server
    Materialart: Preprint
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © The Author(s), 2018. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in American Journal of Science 318 (2018): 527-556, doi:10.2475/05.2018.04.
    Beschreibung: Iron speciation and trace metal proxies are commonly applied together in efforts to identify anoxic settings marked by the presence of free sulfide (euxinia) or dissolved iron (ferruginous) in the water column. Here, we use a literature compilation from modern localities to provide a new empirical evaluation of coupled Fe speciation and Mo concentrations as a proxy for pore water sulfide accumulation at non-euxinic localities. We also present new Fe speciation, Mo concentration, and S isotope data from the Friends of Anoxic Mud (FOAM) site in Long Island Sound, which is marked by pore water sulfide accumulation of up to 3 mM beneath oxygen-containing bottom waters. For the operationally defined Fe speciation scheme, ‘highly reactive’ Fe (FeHR) is the sum of pyritized Fe (Fepy) and Fe dominantly present in oxide phases that is available to react with pore water sulfide to form pyrite. Observations from FOAM and elsewhere confirm that Fepy/FeHR from non-euxinic sites is a generally reliable indicator of pore fluid redox, particularly the presence of pore water sulfide. Molybdenum (Mo) concentration data for anoxic continental margin sediments underlying oxic waters but with sulfidic pore fluids typically show authigenic Mo enrichments (2-25 ppm) that are elevated relative to the upper crust (1-2 ppm). However, compilations of Mo concentrations comparing sediments with and without sulfidic pore fluids underlying oxic and low oxygen (non-euxinic) water columns expose non-unique ranges for each, exposing false positives and false negatives. False positives are most frequently found in sediments from low oxygen water columns (for example, Peru Margin), where Mo concentration ranges can also overlap with values commonly found in modern euxinic settings. FOAM represents an example of a false negative, where, despite elevated pore water sulfide concentrations and evidence for active Fe and Mn redox cycling in FOAM sediments, sedimentary Mo concentrations show a homogenous vertical profile across 50 cm depth at 1-2 ppm. A diagenetic model for Mo provides evidence that muted authigenic enrichments are derived from elevated sedimentation rates. Consideration of a range of additional parameters, most prominently pore water Mo concentration, can replicate the ranges of most sedimentary Mo concentrations observed in modern non-euxinic settings. Together, the modern Mo and Fe data compilations and diagenetic model provide a framework for identifying paleo-pore water sulfide accumulation in ancient settings and linked processes regulating seawater Mo and sulfate concentrations and delivery to sediments. Among other utilities, identifying ancient accumulation of sulfide in pore waters, particularly beneath oxic bottom waters, constrains the likelihood that those settings could have hosted organisms and ecosystems with thiotrophy at their foundations.
    Beschreibung: DSH, TWL, NJP, and CRT acknowledge support from the NASA Astrobiology Institute under Cooperative Agreement No. NNA15BB03A issued through the Science Mission Directorate. Financial support was provided to NR and TWL by NSF-OCE and an appointment to the NASA Postdoctoral Program, as well as to BCG via a postdoctoral fellowship from the Agouron Institute. DSH was supported by a WHOI postdoctoral fellowship.
    Repository-Name: Woods Hole Open Access Server
    Materialart: Preprint
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2022-05-25
    Beschreibung: © The Author(s), 2017. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Chemical Geology 457 (2017): 95-106, doi:10.1016/j.chemgeo.2017.03.016.
    Beschreibung: Carbonate-associated iodine (I/Ca) has been used as a proxy of local, upper-ocean redox conditions, and has successfully demonstrated highly dynamic spatial and temporal patterns across different time scales of Earth history. To further explore the utility of iodine as a paleo-environmental proxy, we present here a new method of extracting organically bound iodine (Iorg) from shale using volumes of samples on the order of tens of milligrams, thus offering the potential for high-resolution work across thin shale beds. The ratio of Iorg to total organic carbon (I/TOC) in modern surface and subsurface sediments decreases with decreasing bottom-water oxygen, which may be used to reconstruct paleo-redox changes. As a proof of concept, we evaluate the I/TOC proxy in Holocene sediments from the Baltic Sea, Landsort Deep (IODP 347) and discuss those data within a framework of additional independent redox proxies, e.g., iron speciation and [Mo]. The results imply that I/TOC may be sensitive to hypoxic–suboxic conditions, complementary to proxies sensitive to more reducing, anoxic–euxinic conditions. Then, we test the usage of I/TOC in sediments deposited during Late Cretaceous, Cenomanian–Turonian Oceanic Anoxic Event (OAE) 2 from ~ 94 million years ago (Ma). We generated I/TOC and Iorg records from six OAE 2 sections: Tarfaya (Morocco), Furlo (central Italy), Demerara Rise (western equatorial Atlantic), Cape Verde Basin (eastern equatorial Atlantic), South Ferriby (UK), and Kerguelen Plateau (southern Indian Ocean), which provide a broad spatial coverage. Generally, I/TOC decreases over the interval recorded by the positive carbon-isotope excursion, the global signature of OAE 2, suggesting an expansion of more reducing bottom-water conditions and consistent with independent constraints from iron speciation and redox-sensitive trace-metals (e.g., Mo). Relatively higher I/TOC values (thus more oxic conditions) are recorded at two high latitude sites for OAE 2, supporting previous model simulations (cGENIE) that indicated higher bottom water oxygen concentrations in these regions. Our results also indicate that organic-rich and oxygenated seafloors are likely a major sink of iodine and correspondingly influence its global seawater inventory.
    Beschreibung: XZ, WL and ZL are supported by NSF EAR 1349252. DH and TWL acknowledge support from the Geobiology and Low-temperature Geochemistry (GG) Program of NSF. DH would like to acknowledge a Schlanger Ocean Drilling Fellowship.
    Schlagwort(e): I/TOC ; Bottom water ; OAE 2 ; Black shale ; Baltic
    Repository-Name: Woods Hole Open Access Server
    Materialart: Preprint
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2022-05-26
    Beschreibung: © The Author(s), 2016. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Earth-Science Reviews 163 (2016): 323-348, doi:10.1016/j.earscirev.2016.10.013.
    Beschreibung: Life requires a wide variety of bioessential trace elements to act as structural components and reactive centers in metalloenzymes. These requirements differ between organisms and have evolved over geological time, likely guided in some part by environmental conditions. Until recently, most of what was understood regarding trace element concentrations in the Precambrian oceans was inferred by extrapolation, geochemical modeling, and/or genomic studies. However, in the past decade, the increasing availability of trace element and isotopic data for sedimentary rocks of all ages have yielded new, and potentially more direct, insights into secular changes in seawater composition – and ultimately the evolution of the marine biosphere. Compiled records of many bioessential trace elements (including Ni, Mo, P, Zn, Co, Cr, Se, and I) provide new insight into how trace element abundance in Earth’s ancient oceans may have been linked to biological evolution. Several of these trace elements display redox-sensitive behavior, while others are redox-sensitive but not bioessential (e.g., Cr, U). Their temporal trends in sedimentary archives provide useful constraints on changes in atmosphere-ocean redox conditions that are linked to biological evolution, for example, the activity of oxygen-producing, photosynthetic cyanobacteria. In this review, we summarize available Precambrian trace element proxy data, and discuss how temporal trends in the seawater concentrations of specific trace elements may be linked to the evolution of both simple and complex life. We also examine several biologically relevant and/or redox-sensitive trace elements that have yet to be fully examined in the sedimentary rock record (e.g., Cu, Cd, W) and suggest several directions for future studies.
    Beschreibung: LJR gratefully acknowledges the support of a Vanier Canada Graduate Scholarship. Discovery Grants from the Natural Sciences and Engineering Research Council of Canada (NSERC) to CAP, BK, DSA, SAC, and KOK supported this work. This material is based upon work supported by the National Aeronautics and Space Administration through the NASA Astrobiology Institute under Cooperative Agreement No. NNA15BB03A issued through the Science Mission Directorate. NJP receives support from the Alternative Earths NASA Astrobiology Institute. Funding from the NASA Astrobiology Institute, and the NSF FESD and ELT programs to TWL, and the Region of Brittany and LabexMER funding to SVL are also gratefully acknowledged. AB thanks the Society of Independent Thinkers.
    Schlagwort(e): Iron formations ; Black shales ; Eukaryotes ; Prokaryotes ; Evolution ; Trace elements ; Biolimitation ; Precambrian
    Repository-Name: Woods Hole Open Access Server
    Materialart: Preprint
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...