GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Language
  • 1
    Type of Medium: Book
    Pages: 100 pages
    ISBN: 9789464206111
    Series Statement: European Marine Board Position Paper 26
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-0581
    Keywords: Mid-Atlantic Ridge ; magnetic anomalies ; ocean crust ; basalts ; peridotites ; volcanic ejecta
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract In August–September of 1995, 20 Nautile dives and detailed magnetic surveys (spaced every 1.8 km) were undertaken on two segments of the Mid-Atlantic Ridge between the Oceanographer and Hayes fractures zones. These two segments are only 65 km apart and show strong morphology and gravity contrasts. OH1 is shallower and has a large mantle Bouguer anomaly (MBA) bull's eye, whereas OH3 is deeper and has a smaller MBA bull's eye. Thirteen dives were devoted to segment OH1. The Median Ridge (MR) located on the central high (1700 m deep) is topped by 100 to 300 m high circular volcanoes. The volcanics consists mainly of porphyritic and/or vesicular pillows and volcaniclastics. The NVZ (2200 m deep), located in the valley floor east of the MR, consists of near aphyric fluid lava flows. A chain of off-axis volcanoes, displaying a magnetic continuity with surroundings, extends on both sides of the axis. Three volcanoes on the east side and one on the west side of the axis were explored and sampled by submersible. The off-axis increase of weathering, Fe-Mn coating and magnetic signature suggest that the volcanoes were built at or near the ridge axis. The spacing of NS elongated hills bearing circular volcanoes and separated large magnetic signature (2 to 4 km) depressions suggests that several similar volcanic events occured during the past 2 Ma. The last 1 Ma episode involves (1) the construction of an axial ridge (MR) by fissure eruptions and the formation of circular summit volcanoes by focused volcanism, and (2) the extrusion of fluid magma in the depressions formed by further fissuring and faulting of the MR.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-0581
    Keywords: Back-arc basin ; incipient seafloor spreading ; rifting ; swath bathymetry ; morphostructure ; seismic reflection ; Bransfield Basin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The Bransfield Basin is a narrow and elongated active rift basin located between the Antarctic Peninsula and the South Shetland Islands. The Bransfield Basin is composed of three small basins, and two of them, the Central and Eastern Bransfield Basins, were surveyed during a recent cruise (GEBRA 93). The full swath bathymetry coverage as well as the single-channel seismic reflection and magnetic profiles that have been acquired, help us to better understand the morphostructure and recent evolution of the Bransfield Basin. Six large volcanic edifices aligned with the basin axis stick out of the sedimented seafloor of the Central Bransfield Basin. In contrast, the Eastern Bransfield Basin is characterised by four deep troughs displaying a rhombic-shape, and small, scattered volcanic cones located in the southwestern half basin. Seamount volcanism plays an important role in the formation of new crust in the Bransfield Basin. The larger seamounts of the Central Bransfield Basin are located at the intersection of the two main orthogonal sets of faults (longitudinal ENE-WSW and transversal NNW-SSE). Morphological analysis of the seamounts indicates a multi-staged volcano-tectonic construction. The distribution and shape of these edifices suggests that both volcanism and extension are concentrated at the same preferential areas through time. This might be related to the fracturation style of the continental crust. The Central and Eastern Bransfield Basins are very different in morphostructure, volcanism, and sedimentary cover. The Central Bransfield Basin shows evidence of NW-SE extensional faulting and focused active MORB-volcanism interpreted as result of incipient seafloor spreading. The Eastern Bransfield Basin is still in a rifting stage, mainly dominated by a NW-SE extension and some left-lateral strike-slip component probably related to the South Scotia Ridge.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-0581
    Keywords: Back-arc basin ; spreading center ; axial morphology ; Manile Bouguer Anomaly ; segmentation ; thermal modelling
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The Central Spreading Ridge (CSR) is located in the central part of the North Fiji Basin, a complex back-arc basin created 12 Ma ago between the Pacific and Indo-Australian plates. The 3.5 Ma old CSR is the best developed, for both structure and magmatism, of all the spreading centers identified in the basin, and may be one of the largest spreading systems of the west Pacific back-arc basins. It is more than 800 km long and 50–60 km wide, and has been intensively explored during the French-Japanese STARMER project (1987–1991). The CSR is segmented into three first order segments named, from north to south, N160°, N15° and N-S according to their orientation. This segmentation pattern is similar to that found at mid-ocean ridges. The calculated spreading rate is intermediate and ranges from 83 mm/yr at 20°30′ S to 50 mm/yr at 17°S. In addition, there is a change in the axial ridge morphology and gravity structure between the northern and southern sections of the CSR. The axial morphology changes from a deep rift valley (N160° segment), to a dome split by an axial graben (N15° segment) and to a rectangular flat top high (N-S segment). The Mantle Bouguer Anomalies obtained on the northern part of the CSR (N160°/N15° segments) show “bull's eye” structures associated with mantle upwelling at the 16°50′S triple junction and also in the middle of the segments. The Mantle Bouguer Anomalies of the southern part of the ridge (N-S segment) are more homogeneous and consistent with the observed smooth topography associated with axial isostatic compensation. At these intermediate spreading rates the contrast in bathymetry and gravity structure between the segments may reflect differences in heat supply. We suggest that the N160° and N15° segments are “cold” with respect to the “hot” N-S segment. We use a non-steady-state thermal model to test this hypothesis. In this model, the accretion is simulated as a nearly steady-state seafloor spreading upon which are superimposed periodic thermal inputs. With the measured spreading rate of 50 mm/yr, a cooling cycle of 200,000 yr develops a thermal state that permits to explain the axial morphology and gravity structure observed on the N160° segment. A spreading rate of 83 mm/yr and a cooling cycle of 120,000 yr would generate the optimal thermal structure to explain the characteristics of the N-S segment. The boundaries between the “hot” N-S segment and its “cold” bounding segments are the 18°10′ S and 20°30′ S propagating rifts. A heat propagation event along the N-S segment at the expense of the adjacent colder failing segments, can explain the sharp changes in the observed morphology and structure between the segments.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-05-12
    Description: The H2020 Project SERA (WP25-JRA3; http://www.sera-eu.org) is committed to updating and extending the 2013 European Seismic Hazard Model (ESHM13; Woessner et al., 2015, Bull. Earthquake Eng.) to form the basis of the next revision of the European seismic design code (CEN-EC8). Following the probabilistic framework established for ESHM13, the 2020 update (ESHM20) requires a continent-wide seismogenic model based on input from earthquake catalogs, tectonic information, and active faulting. The development of the European Fault-Source Model (EFSM20) fulfills the requirements related to active faulting. EFSM20 has two main categories of seismogenic faults: crustal faults and subduction systems. Crustal faults are meant to provide the hazard model with seismicity rates in a variety of tectonic contexts, including onshore and offshore active plate margins and plate interiors. Subduction systems are meant to provide the hazard model with both slab interface and intraslab seismicity rates. The model covers an area that encompasses a buffer of 300 km around all target European countries (except for Overseas Countries and Territories, OTCs), and a maximum of 300 km depth for slabs. The compilation of EFSM20 relies heavily on publicly available datasets and voluntarily contributed datasets spanning large regions, as well as solicited local contributions in specific areas of interest. The current status of the EFSM20 compilation includes 1,256 records of crustal faults for a total length of ~92,906 km and four subduction systems, namely the Gibraltar Arc, Calabrian Arc, Hellenic Arc, and Cyprus Arc. In this contribution, we present the curation of the main datasets and their associated information, the criteria for the prioritization and harmonization across the region, and the main strategy for transferring the earthquake fault-source input to the hazard modelers. The final version of EFSM20 will be made available through standard web services published in the EFEHR (http://www.efehr.org) and EPOS (https://www.seismofaults.eu) platforms adopting FAIR data principles. The SERA project received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No.730900.
    Description: European Union's Horizon 2020 research and innovation programme under grant agreement No.730900
    Description: Published
    Description: Online
    Description: 3T. Sorgente sismica
    Keywords: Seismic Hazard Assessment ; SHA ; Seismogenic fault ; EFSM20 ; SERA ; Solid Earth
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: © The Author(s), 2016. This is the author's version of the work and is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Tectonophysics 689 (2016): 25-39, doi:10.1016/j.tecto.2016.03.009.
    Description: The Palomares continental margin is located in the southeastern part of Spain. The margin main structure was formed during Miocene times, and it is currently part of the wide deformation zone characterizing the region between the Iberian and African plates, where no well-defined plate boundary occurs. The convergence between these two plates is here accommodated by several structures, including the left lateral strike-slip Palomares Fault. The region is characterized by sparse, low to moderate magnitude (Mw 〈 5.2) shallow instrumental earthquakes, although large historical events have also occurred. To understand the recent tectonic history of the margin we analyze new high-resolution multibeam bathymetry data and re-processed three multichannel seismic reflection profiles crossing the main structures. The analysis of seafloor morphology and associated subsurface structure provides new insights of the active tectonic features of the area. In contrast to other segments of the southeastern Iberian margin, the Palomares margin contains numerous large and comparatively closely spaced canyons with heads that reach near the coast. The margin relief is also characterized by the presence of three prominent igneous submarine ridges that include the Aguilas, Abubacer and Maimonides highs. Erosive processes evidenced by a number of scars, slope failures, gullies and canyon incisions shape the present-day relief of the Palomares margin. Seismic images reveal the deep structure distinguishing between Miocene structures related to the formation of the margin and currently active features, some of which may reactivate inherited structures. The structure of the margin started with an extensional phase accompanied by volcanic accretion during the Serravallian, followed by a compressional pulse that started during the Latemost Tortonian. Nowadays, tectonic activity offshore is subdued and limited to few, minor faults, in comparison with the activity recorded onshore. The deep Algero-Balearic Basin is affected by surficial processes, associated to halokinesis of Messinian evaporites.
    Description: The authors acknowledge the support from the Spanish Ministry of Economy and Competitiveness through the Complementary Action ESF TopoEurope TOPOMED (CGL2008-03474-E/BTE), National Projects SHAKE (CGL2011-30005-C02-02) and INSIGHT (CTM2015-70155-R), and the EU-COST Action FLOWS (ES 1301).
    Description: 2017-03-18
    Keywords: Multichannel Seismic reflection ; Swath-bathymetry ; Geomorphology ; SE Iberia margin ; Geodynamic evolution
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-02-22
    Description: The westernmost Mediterranean hosts part of the plate boundary between the European and African tectonic plates. Based on the scattered instrumental seismicity, this boundary has been traditionally interpreted as a wide zone of diffuse deformation. However, recent seismic images and seafloor mapping studies support that most of the plate convergence may be accommodated in a few tectonic structures, rather than in a broad region. Historical earthquakes with magnitudes Mw 〉 6 and historical tsunamis support that the low-to-moderate instrumental seismicity might also have led to underestimation of the seismogenic and tsunamigenic potential of the area. We evaluate the largest active faults of the westernmost Mediterranean: the reverse Alboran Ridge, and the strike-slip Carboneras, Yusuf and Al-Idrissi fault systems. For the first time, we use a dense grid of modern seismic data to characterize the entire dimensions of the main fault systems, accurately describe the geometry of these structures and estimate their seismic source parameters. Tsunami scenarios have been tested based on 3D-surfaces and seismic source parameters, using both uniform and heterogeneous slip distributions. The comparison of our results with previous studies, based on limited information on the fault geometry and kinematics, indicates that accurate fault geometries and heterogeneous slip distributions are needed to properly assess the seismic and tsunamigenic potential in this area. Based on fault scaling relations, the four fault systems have a large seismogenic potential, being able to generate earthquakes with Mw 〉 7. The reverse Alboran Ridge Fault System has the largest tsunamigenic potential, being able to generate a tsunami wave amplitude greater than 3 m in front of the coasts of Southern Spain and Northern Africa.
    Description: Published
    Description: 106749
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: JCR Journal
    Keywords: Western Mediterranean ; Seismogenic potential ; Tsunamigenic potential ; Numerical modelling ; Active faults ; Active seismic data ; 04.04. Geology ; 04.07. Tectonophysics ; 04.06. Seismology ; 05.08. Risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-12-23
    Description: The SW Iberian margin is one of the most seismogenic and tsunamigenic areas in W-Europe, where large historical and instrumental destructive events occurred. To evaluate the sensitivity of the tsunami impact on the coast of SW Iberia and NW Morocco to the fault geometry and slip distribution for local earthquakes, we carried out a set of tsunami simulations considering some of the main known active crustal faults in the region: the Gorringe Bank (GBF), Marquês de Pombal (MPF), Horseshoe (HF), North Coral Patch (NCPF) and South Coral Patch (SCPF) thrust faults, and the Lineament South strike-slip fault. We started by considering for all of them relatively simple planar faults featuring with uniform slip distribution; we then used a more complex 3D fault geometry for the faults constrained with a large 2D multichannel seismic dataset (MPF, HF, NCPF, and SCPF); and finally, we used various heterogeneous slip distributions for the HF. Our results show that using more complex 3D fault geometries and slip distributions, the peak wave height at the coastline can double compared to simpler tsunami source scenarios from planar fault geometries. Existing tsunami hazard models in the region use homogeneous slip distributions on planar faults as initial conditions for tsunami simulations and therefore underestimate tsunami hazard. Complex 3D fault geometries and non-uniform slip distribution should be considered in future tsunami hazard updates. The tsunami simulations also support the finding that submarine canyons attenuate the wave height reaching the coastline, while submarine ridges and shallow shelves have the opposite effect.
    Description: Published
    Description: e2021JB022127
    Description: 2T. Deformazione crostale attiva
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: 2TR. Ricostruzione e modellazione della struttura crostale
    Description: 2IT. Laboratori analitici e sperimentali
    Description: JCR Journal
    Keywords: tsunami ; earthquake ; complex fault geometry ; heterogeneous slip distribution ; tsunami numerical modeling ; seismic and tsunami hazard ; 04.04. Geology ; 04.06. Seismology ; 05.08. Risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-12-20
    Description: Marine geohazards pose a significant threat to the European coastal population and to the development of the Blue Economy. This Position Paper discusses the type, distribution and impact of marine geohazards on the European coastal regions and the Blue Economy, as well as what and how novel scientific approaches may broaden our understanding of their trigger mechanisms and drive a risk-mitigating European policy.
    Description: Challenge 6: Increase community resilience to ocean hazards; Challenge 7: Expand the Global Ocean Observing System.
    Description: Published
    Description: Refereed
    Keywords: Blue Economy ; Marine geohazards ; Coastal region
    Repository Name: AquaDocs
    Type: Book/Monograph/Conference Proceedings
    Format: 100pp
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-11-18
    Description: Seismology and Earthquake Engineering Research Infrastructure Alliance for Europe (SERA), H2020, grant agreements 730900.
    Description: Published
    Description: 2T. Deformazione crostale attiva
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: 4IT. Banche dati
    Keywords: Geology ; Earth sciences of Europe ; Earth sciences of Africa ; Earth sciences of Asia ; Earth Sciences and Geology ; earthquakes ; hazard model ; seismogenic faults ; slip rate ; crustal fault sources ; subduction fault sources ; Seismology ; 04.04. Geology ; 04.06. Seismology ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: web product
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...