GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-01-05
    Description: Probabilistic fault displacement hazard analysis provides a systematic approach to estimate the likelihood of occurrence and expected amount of surface displacement during an earthquake on-fault (principal fault rupturing) and off-fault (distributed rupturing). The methodology is based on four key parameters describing the probability of occurrence and the spatial distribution of the displacement both on and off-fault. In this work we concentrate on off-fault rupturing, and develop an original probability model for the occurrence of distributed ruptures and for the expected displacement distribution based on the compilation and reappraisal of surface ruptures from 15 historical crustal earthquakes of reverse kinematics, with magnitudes ranging from Mw 4.9 to 7.9. We introduce a new ranking scheme to distinguish principal faults (rank 1) from simple distributed ruptures (rank 2), primary distributed ruptures (rank 1.5), bending-moment (rank 21) and flexural-slip (rank 22) and triggered faulting (rank 3). We then used the rank 2 distributed ruptures with distances from the principal fault ranging from 5 to 1,500 m. To minimize bias due to the incomplete nature of the database, we propose a “slicing” approach as an alternative to the “gridding” approach. The parameters obtained from slicing are then is then combined with Monte Carlo simulations to model the dependence of the probability of occurrence and exceedance with the dimensions and position of the site of interest with respect to the principal fault, both along and across strike. We applied the probability model to a case-study in Finland to illustrate the applicability of the method given the limited extend of the available dataset. We finally suggest that probabilistic fault displacement hazard model will benefit by evaluating spatial distribution of distributed rupture in the light of spatial completeness of the input data, structural complexity and physics observables of the causative fault.
    Description: Published
    Description: 581605
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-12-15
    Description: Fault displacement hazard assessment is based on empirical relationships that are established using historic earthquake fault ruptures. These relationships evaluate the likelihood of coseismic surface slip considering on-fault and off-fault ruptures, for given earthquake magnitude and distance to fault. Moreover, they allow predicting the amount of fault slip at and close to the active fault of concern. Applications of this approach include land use planning, structural design of infrastructure, and critical facilities located on or close to an active fault. To date, the current equations are based on sparsely populated datasets, including a limited number of pre-2000 events. In 2015, an international effort started to constitute a worldwide and unified fault displacement database (SUrface Ruptures due to Earthquakes [SURE]) to improve further hazard estimations. After two workshops, it was decided to unify the existing datasets (field-based slip measurements) to incorporate recent and future cases, and to include new parameters relevant to properly describe the rupture. This contribution presents the status of the SURE database and delineates some perspectives to improve the surface-faulting assessment. Original data have been compiled and adapted to the structure. The database encompasses 45 earthquakes from magnitude 5–7.9, with more than 15,000 coseismic surface deformation observations (including slip measurements) and 56,000 of rupture segments. Twenty earthquake cases are from Japan, 15 from United States, two from Mexico, Italy, and New Zealand, one from Kyrgystan, Ecuador, Turkey, and Argentina. Twenty-four earthquakes are strike-slip faulting events, 11 are normal or normal oblique, and 10 are reverse faulting.
    Description: Published
    Description: 499–520
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: JCR Journal
    Keywords: surface rupture ; fault displacement hazard ; 04.04. Geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-02-02
    Description: The 29 December 2020, Mw 6.4 Petrinja earthquake nucleated at a depth of ~10 km in the Sisak-Moslavina County in northern Croatia, ~6 km WSW of the Petrinja town. Focal mechanisms, aftershocks distribution, and preliminary Sentinel-1 InSAR interferogram suggest that the NW-SE right-lateral strike-slip Pokupsko-Petrinja fault was the source of this event. The Croatian Geological Survey, joined by a European team of earthquake geologists from France, Slovenia and Italy, performed a prompt systematic survey of the area to map the surface effects of the earthquake. The field survey was guided by geological maps, preliminary morphotectonic mapping based on 1:5,000 topographical maps and InSAR interferogram. Locally, field mapping was aided by drone survey. We mapped unambiguous evidence of surface faulting at several sites between Župić to the NW and Hrastovica to the SE, in the central part of the Pokupsko-Petrinja fault, for a total length of ~6.5 km. This is probably a minimum length since several portions of the fault have not been explored yet, and in part crossing forbidden uncleared minefields. Surface faulting was observed on anthropic features (roads, walls) and on Quaternary sediments (soft colluvium and alluvium) and Miocene bedrock (calcarenites). The observed ruptures strike mostly NW-SE, with evidences of strike-slip right-lateral displacement and zones of extension (opening) or contraction (small pressure ridges, moletracks) at local bends of the rupture trace. Those ruptures are interpreted as evidences of coseismic surface faulting (primary effects) as they affect the morphology independently from the slope direction. Ground failures due to gravitational sliding and liquefaction occurrences were also observed, mapped and interpreted as secondary effects (see Amoroso et al., and Vukovski et al., this session). SE of Križ, the rupture broke a water pipeline with a right-lateral offset of several centimetres. Measured right-lateral net displacement varies from a few centimetres up to ~35 cm. A portion of the maximum measured displacement could be due to afterlisp, as it was mapped several days after the main shock. Hybrid surface ruptures (shear plus opening and liquefaction), striking SW-NE, with cm-size left-lateral strike-slip offsets were mapped on the northern side of the Petrinja town, ~3 km NE of the main fault. Overall, the rupture zone appears discontinuous. Several factors might be inferred to explain this pattern such as incomplete mapping of the rupture, inherited structural discontinuities within the Pokupsko-Petrinja fault system, or specific mechanical properties of the Neogene-Quaternary strata
    Description: Published
    Description: Gather Online
    Description: 2T. Deformazione crostale attiva
    Keywords: Surface faulting ; Surface faulting during the 29 December 2020 Mw 6.4 Petrinja earthquake (Croatia)
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-06-22
    Description: This article has been accepted for publication in Geophysical Journal International ©: The Authors 2022. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved. Uploaded in accordance with the publisher's self-archiving policy.
    Description: On 29 December 2020, a shallow earthquake of magnitude Mw 6.4 struck northern Croatia, near the town of Petrinja, more than 24 hours after a strong foreshock (Ml 5). We formed a reconnaissance team of European geologists and engineers, from Croatia, Slovenia, France, Italy and Greece, rapidly deployed in the field to map the evidence of coseismic environmental effects. In the epicentral area, we recognized surface deformation, such as tectonic breaks along the earthquake source at the surface, liquefaction features (scattered in the fluvial plains of Kupa, Glina and Sava rivers), and slope failures, both caused by strong motion. Thanks to this concerted, collective and meticulous work, we were able to document and map a clear and unambiguous coseismic surface rupture associated with the main shock. The surface rupture appears discontinuous, consisting of multi-kilometer en échelon right stepping sections, along a NW-SE striking fault that we call the Petrinja-Pokupsko Fault (PPKF). The observed deformation features, in terms of kinematics and trace alignments, are consistent with slip on a right lateral fault, in agreement with the focal solution of the main shock. We found mole tracks, displacement on faults affecting natural features (e. g. drainage channels), scarplets, and more frequently breaks of anthropogenic markers (roads, fences). The surface rupture is observed over a length of ∼13 km from end-to-end, with a maximum displacement of 38 cm, and an average displacement of ∼10 cm. Moreover, the liquefaction extends over an area of nearly 600 km² around the epicenter. Typology of liquefaction features include sand blows, lateral spreading phenomenon along the road and river embankments, as well as sand ejecta of different grain size and matrix. Development of large and long fissures along the fluvial landforms, current or ancient, with massive ejections of sediments is pervasive. These features are sometimes accompanied by small horizontal displacements. Finally, the environmental effects of the earthquake appear to be reasonably consistent with the usual scaling relationships, in particular the surface faulting. This rupture of the ground occurred on or near traces of a fault that shows clear evidence of Quaternary activity. Further and detailed studies will be carried out to characterize this source and related faults in terms of future large earthquakes potential, for their integration into seismic hazard models.
    Description: Published
    Description: 1394–1418
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: Seismicity and tectonics ; Earthquake hazards ; Coseismic effects ; M6.4 Petrinja earthquake (Croatia)
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-11-18
    Description: Seismology and Earthquake Engineering Research Infrastructure Alliance for Europe (SERA), H2020, grant agreements 730900.
    Description: Published
    Description: 2T. Deformazione crostale attiva
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: 4IT. Banche dati
    Keywords: Geology ; Earth sciences of Europe ; Earth sciences of Africa ; Earth sciences of Asia ; Earth Sciences and Geology ; earthquakes ; hazard model ; seismogenic faults ; slip rate ; crustal fault sources ; subduction fault sources ; Seismology ; 04.04. Geology ; 04.06. Seismology ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: web product
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-02-02
    Description: Surface rupturing data from the historical earthquakes is used for obtaining empirical regression parameters for fault displacement hazard assessment. This paper represents an additional compilation and analysis effort, extending the first version of the SUrface Ruptures due to Earthquake (SURE) database. This new release contains slip measurements and mapped surface rupture traces of 50 surface rupturing earthquakes of reverse, normal, and strike-slip kinematics occurred all over the world between 1872 and 2019. As a novelty, a ranking scheme of the rupture features is applied to all the traces and slip measurements in the database. Fault ranking introduces geology as a primary analysis tool and allows the end user to obtain regression parameters suitable for the specific geological conditions at the site of interest. SURE 2.0 dataset consists of a table containing the background information about each earthquake, a table containing the slip measurement data of each event, and a joint shapefile containing all the surface rupture traces of the events in the database.
    Description: Published
    Description: 729
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-01-23
    Description: The NE-dipping Anghiari normal fault, bounding to the west the Sansepolcro basin in the Upper Tiber Valley (northern Apennines), is thought to be a synthetic splay of the Altotiberina low-angle normal fault (LANF), an active ENE-dipping extensional detachment whose seismogenic behavior is debated. In order to assess the Anghiari fault capability to break the surface during strong earthquakes and be the source of historical earthquakes, we acquired high resolution topographic data, performed field survey and geophysical investigations (Seismic reflection, Ground Penetrating Radar, Electrical Resistivity Tomography) and dug three paleoseismological trenches across different fault sections of the Anghiari fault. The acquired data reveal for the first time the Late Pleistocene to historical activity of the Anghiari fault, constraining the age of seven paleo-earthquakes over the last 25 ka, the youngest of which is comparable with one of the poorly constrained historical earthquakes of the Sansepolcro basin. The yielded slip rate is 〉0.2 mm/yr averaged over the last 25 ka and the recurrence interval is about 2,500–3,200 years. An analysis of the anisotropy of the magnetic susceptibility performed in one of the paleoseismological trenches revealed an extensional stress field, continuously acting during the sedimentation of the entire trenched stratigraphy. Our results confirm the ability of the Anghiari fault to generate surface faulting earthquakes. In addition, if the Anghiari fault does sole at depth into the Altotiberina low-angle normal fault, this LANF could also be seismogenic and generate M 〉 6
    Description: Published
    Description: e2023TC007798
    Description: OST3 Vicino alla faglia
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...