GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-01-31
    Description: Ocean surface winds, currents, and waves play a crucial role in exchanges of momentum, energy, heat, freshwater, gases, and other tracers between the ocean, atmosphere, and ice. Despite surface waves being strongly coupled to the upper ocean circulation and the overlying atmosphere, efforts to improve ocean, atmospheric, and wave observations and models have evolved somewhat independently. From an observational point of view, community efforts to bridge this gap have led to proposals for satellite Doppler oceanography mission concepts, which could provide unprecedented measurements of absolute surface velocity and directional wave spectrum at global scales. This paper reviews the present state of observations of surface winds, currents, and waves, and it outlines observational gaps that limit our current understanding of coupled processes that happen at the air-sea-ice interface. A significant challenge for the coming decade of wind, current, and wave observations will come in combining and interpreting measurements from (a) wave-buoys and high-frequency radars in coastal regions, (b) surface drifters and wave-enabled drifters in the open-ocean, marginal ice zones, and wave-current interaction “hot-spots,” and (c) simultaneous measurements of absolute surface currents, ocean surface wind vector, and directional wave spectrum from Doppler satellite sensors.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-04-14
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-05-06
    Description: The global navigation satellite system (GNSS) Transpolar Earth Reflectometry exploriNg system (G-TERN) was proposed in response to ESA's Earth Explorer 9 revised call by a team of 33 multi-disciplinary scientists. The primary objective of the mission is to quantify at high spatio-temporal resolution crucial characteristics, processes and interactions between sea ice, and other Earth system components in order to advance the understanding and prediction of climate change and its impacts on the environment and society. The objective is articulated through three key questions. 1) In a rapidly changing Arctic regime and under the resilient Antarctic sea ice trend, how will highly dynamic forcings and couplings between the various components of the ocean, atmosphere, and cryosphere modify or influence the processes governing the characteristics of the sea ice cover (ice production, growth, deformation, and melt)? 2) What are the impacts of extreme events and feedback mechanisms on sea ice evolution? 3) What are the effects of the cryosphere behaviors, either rapidly changing or resiliently stable, on the global oceanic and atmospheric circulation and mid-latitude extreme events? To contribute answering these questions, G-TERN will measure key parameters of the sea ice, the oceans, and the atmosphere with frequent and dense coverage over polar areas, becoming a “dynamic mapper”of the ice conditions, the ice production, and the loss in multiple time and space scales, and surrounding environment. Over polar areas, the G-TERN will measure sea ice surface elevation (〈;10 cm precision), roughness, and polarimetry aspects at 30-km resolution and 3-days full coverage. G-TERN will implement the interferometric GNSS reflectometry concept, from a single satellite in near-polar orbit with capability for 12 simultaneous observations. Unlike currently orbiting GNSS reflectometry missions, the G-TERN uses the full GNSS available bandwidth to improve its ranging measurements. The lifetime would be 2025-2030 or optimally 2025-2035, covering key stages of the transition toward a nearly ice-free Arctic Ocean in summer. This paper describes the mission objectives, it reviews its measurement techniques, summarizes the suggested implementation, and finally, it estimates the expected performance.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Boas, A. B. V., Ardhuin, F., Ayet, A., Bourassa, M. A., Brandt, P., Chapron, B., Cornuelle, B. D., Farrar, J. T., Fewings, M. R., Fox-Kemper, B., Gille, S. T., Gommenginger, C., Heimbach, P., Hell, M. C., Li, Q., Mazloff, M. R., Merrifield, S. T., Mouche, A., Rio, M. H., Rodriguez, E., Shutler, J. D., Subramanian, A. C., Terrill, E. J., Tsamados, M., Ubelmann, C., & van Sebille, E. Integrated observations of global surface winds, currents, and waves: Requirements and challenges for the next decade. Frontiers in Marine Science, 6, (2019): 425, doi:10.3389/fmars.2019.00425.
    Description: Ocean surface winds, currents, and waves play a crucial role in exchanges of momentum, energy, heat, freshwater, gases, and other tracers between the ocean, atmosphere, and ice. Despite surface waves being strongly coupled to the upper ocean circulation and the overlying atmosphere, efforts to improve ocean, atmospheric, and wave observations and models have evolved somewhat independently. From an observational point of view, community efforts to bridge this gap have led to proposals for satellite Doppler oceanography mission concepts, which could provide unprecedented measurements of absolute surface velocity and directional wave spectrum at global scales. This paper reviews the present state of observations of surface winds, currents, and waves, and it outlines observational gaps that limit our current understanding of coupled processes that happen at the air-sea-ice interface. A significant challenge for the coming decade of wind, current, and wave observations will come in combining and interpreting measurements from (a) wave-buoys and high-frequency radars in coastal regions, (b) surface drifters and wave-enabled drifters in the open-ocean, marginal ice zones, and wave-current interaction “hot-spots,” and (c) simultaneous measurements of absolute surface currents, ocean surface wind vector, and directional wave spectrum from Doppler satellite sensors.
    Description: AV was funded by NASA Earth and Space Science Fellowship award number 80NSSC17K0326. MB was funded by NOAA (FundRef number 100007298) through the NGI (grant number 18-NGI3-42). SG was funded by NASA grants NNX16AH67G, NNX14A078G, NNX17AH53G, and 80NSSC19K0059. MT acknowledges support from the Natural Environment Research Council (grant number NE/R000654/1). MT, MR, JS, and EvS were partially funded by the SKIM Mission Science Study (SKIM-SciSoc) project ESA RFP 3-15456/18/NL/CT/gp. AA was supported by DGA grant No D0456JE075 and the French Brittany Regional Council. MF was supported by NASA Ocean Vector Winds Science Team Grant 80NSSC18K1611 and Jet Propulsion Laboratory/CalTech subcontract 1531731. FA, BC, and AM were supported by ESA under the Sea State CCI project, with additional support from CNES and ANR grants for ISblue (ANR-17-EURE-0015) and LabexMER (ANR-10-LABX-19). MZ was funded by NASA (grant number NNX16AH67G).
    Keywords: Air-sea interactions ; Doppler oceanography from space ; Surface waves ; Absolute surface velocity ; Ocean surface winds
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-11-10
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in [citation], doi:[doi]. Gommenginger, C., Chapron, B., Hogg, A., Buckingham, C., Fox-Kemper, B., Eriksson, L., Soulat, F., Ubelmann, C., Ocampo-Torres, F., Nardelli, B. B., Griffin, D., Lopez-Dekker, P., Knudsen, P., Andersen, O., Stenseng, L., Stapleton, N., Perrie, W., Violante-Carvalho, N., Schulz-Stellenfleth, J., Woolf, D., Isern-Fontanet, J., Ardhuin, F., Klein, P., Mouche, A., Pascual, A., Capet, X., Hauser, D., Stoffelen, A., Morrow, R., Aouf, L., Breivik, O., Fu, L., Johannessen, J. A., Aksenov, Y., Bricheno, L., Hirschi, J., Martin, A. C. H., Martin, A. P., Nurser, G., Polton, J., Wolf, J., Johnsens, H., Soloviev, A., Jacobs, G. A., Collard, F., Groom, S., Kudryavtsev, V., Wilkin, J., Navarro, V., Babanin, A., Martin, M., Siddorn, J., Saulter, A., Rippeth, T., Emery, B., Maximenko, N., Romeiser, R., Graber, H., Azcarate, A. A., Hughes, C. W., Vandemark, D., da Silva, J., Van Leeuwen, P. J., Naveira-Garabato, A., Gemmrich, J., Mahadevan, A., Marquez, J., Munro, Y., Doody, S., & Burbidge, G. SEASTAR: A mission to study ocean submesoscale dynamics and small-scale atmosphere-ocean processes in coastal, shelf and polar seas. Frontiers in Marine Science, 6, (2019):457, doi:10.3389/fmars.2019.00457.
    Description: High-resolution satellite images of ocean color and sea surface temperature reveal an abundance of ocean fronts, vortices and filaments at scales below 10 km but measurements of ocean surface dynamics at these scales are rare. There is increasing recognition of the role played by small scale ocean processes in ocean-atmosphere coupling, upper-ocean mixing and ocean vertical transports, with advanced numerical models and in situ observations highlighting fundamental changes in dynamics when scales reach 1 km. Numerous scientific publications highlight the global impact of small oceanic scales on marine ecosystems, operational forecasts and long-term climate projections through strong ageostrophic circulations, large vertical ocean velocities and mixed layer re-stratification. Small-scale processes particularly dominate in coastal, shelf and polar seas where they mediate important exchanges between land, ocean, atmosphere and the cryosphere, e.g., freshwater, pollutants. As numerical models continue to evolve toward finer spatial resolution and increasingly complex coupled atmosphere-wave-ice-ocean systems, modern observing capability lags behind, unable to deliver the high-resolution synoptic measurements of total currents, wind vectors and waves needed to advance understanding, develop better parameterizations and improve model validations, forecasts and projections. SEASTAR is a satellite mission concept that proposes to directly address this critical observational gap with synoptic two-dimensional imaging of total ocean surface current vectors and wind vectors at 1 km resolution and coincident directional wave spectra. Based on major recent advances in squinted along-track Synthetic Aperture Radar interferometry, SEASTAR is an innovative, mature concept with unique demonstrated capabilities, seeking to proceed toward spaceborne implementation within Europe and beyond.
    Description: CG and AM received funding from the United Kingdom Centre for Earth Observation Instrumentation SEASTAR+ project (Contract No. RP10G0435A02). PVL was supported by the European Research Council (ERC) CUNDA project 694509 under the European Union Horizon 2020 Research and Innovation Program.
    Keywords: Satellite ; Air sea interactions ; Upper ocean dynamics ; Submesoscale ; Coastal ; Marginal ice zone ; Radar ; Along-track interferometry
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...