GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Electronic books
    Type of Medium: Online Resource
    Pages: 1 online resource (324 pages)
    ISBN: 9783031189883
    Series Statement: Mathematics of Planet Earth Ser. v.10
    Language: English
    Note: Description based on publisher supplied metadata and other sources
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Description / Table of Contents: Intro -- Preface -- Contents -- Internal Tides Energy Transfers and Interactions with the Mesoscale Circulation in Two Contrasted Areas of the North Atlantic -- 1 Introduction -- 2 Governing Equations and Energy Budget -- 3 Data and Method -- 3.1 eNATL60 Simulation -- 3.2 Filtering and Computing Methods -- 4 Results -- 4.1 Life Cycle of the Internal Tide -- 4.2 Importance of the Different Contributions in the Energy Transfers -- 4.2.1 Detailed View of Coupling Terms -- 4.2.2 Modal Energy Budget -- 5 Conclusion -- References -- Sparse-Stochastic Model Reduction for 2D Euler Equations -- 1 Introduction -- 2 Sparse-Stochastic Model Reduction -- 3 Numerical Simulations -- 4 Conclusions and Outlook -- References -- Effect of Transport Noise on Kelvin-Helmholtz Instability -- 1 Introduction -- 2 Model Formulation -- 2.1 Point Vortex Method for Inviscid Flows -- 2.2 Point Vortex Method for Viscous Flows -- 3 Point Vortex Method with Environmental Noise -- 3.1 Transport Noise and Deterministic Scaling Limit -- 3.2 A Digression on the Theoretical Selection of the Noise -- 4 Numerical Results -- 4.1 Setting: Kelvin-Helmholtz Instability -- 4.1.1 The Role of Intrinsic Instability -- 4.1.2 The Role of Viscosity and Stability Restoration -- 4.2 Numerical Results on Environmental Noise -- 4.2.1 Selection of Divergence Free Field -- 4.2.2 Positions and Intensities of Fixed Vortices -- 4.2.3 Effect of Small Scale Common Noise -- 4.3 Diagnostics -- 5 Concluding Remarks -- References -- On the 3D Navier-Stokes Equations with Stochastic Lie Transport -- Introduction -- 1 Introduction -- 2 Preliminaries -- 2.1 Elementary Notation -- 2.2 Functional Framework -- 2.3 The SALT Operator -- 3 The Velocity Equation on the Torus -- 3.1 Definitions and Results -- 3.2 Operator Bounds -- 3.3 Proof of Proposition 3.2 -- 3.4 Proofs of Theorems 3.1 and 3.6.
    Type of Medium: Online Resource
    Pages: 1 online resource (347 pages)
    Edition: 1st ed.
    ISBN: 9783031400940
    Series Statement: Mathematics of Planet Earth Series v.11
    Language: English
    Note: Description based on publisher supplied metadata and other sources
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Land, Peter Edward; Findlay, Helen S; Shutler, Jamie D; Ashton, Ian G C; Holding, Thomas; Grouazel, Antoine; Girard-Ardhuin, Fanny; Reul, Nicolas; Piolle, Jean-Francois; Chapron, Bertrand; Quilfen, Yves; Bellerby, Richard G J; Bhadury, Punyasloke; Salisbury, Joseph; Vandemark, Doug; Sabia, Roberto (2019): Optimum satellite remote sensing of the marine carbonate system using empirical algorithms in the global ocean, the Greater Caribbean, the Amazon Plume and the Bay of Bengal. Remote Sensing of Environment, 235, 111469, https://doi.org/10.1016/j.rse.2019.111469
    Publication Date: 2023-09-16
    Description: Published empirical algorithms for oceanic total alkalinity (TA) and dissolved inorganic carbon (DIC) are used with monthly sea surface salinity (SSS) and temperature (SST) derived from satellite (SMOS, Aquarius, SST CCI) and interpolated in situ (CORA) measurements and climatological (WOA) ancillary data to produce monthly maps of TA and DIC at one degree spatial resolution. Earth system model TA and DIC (HADGEM2-ES) are also included. Results are compared with in situ (GLODAPv2) TA and DIC and results analysed in five regions (global, Greater Caribbean, Amazon plume, Amazon plume with in situ SSS 〈 35 and Bay of Bengal). Results are presented in three versions, denoted by 'X' in the lists below: using all available data (X = ''); excluding data with bathymetry 〈 500m (X = 'Depth500'); excluding data with both bathymetry 〈 500m and distance from nearest coast 〈 300 km (X = 'Depth500Dist300'). Datasets S1 to S5 are .csv lists of matchups in each region - date and location, in situ TA and DIC measurements and estimated uncertainties, all input datasets, estimates of TA and DIC from all outputs, and the best available output estimates of TA and DIC for each matchup. S1_GlobalAlgorithmMatchupsX.csv S2_GreaterCaribbeanAlgorithmMatchupsX.csv S3_AmazonPlumeAlgorithmMatchupsX.csv S4_AmazonPlumeLowSAlgorithmMatchupsX.csv S5_BayOfBengalAlgorithmMatchupsX.csv Datasets S6 to S10 are .csv statistical analyses of the performance of each combination of algorithm and input data - carbonate system variable, algorithm, input datasets used, (MAD, RMSD using all available data, output score, RMSD estimated from output score, output and in situ mean and standard deviation, correlation coefficient), all items in brackets presented both unweighted and weighted, number of matchups, number of potential matchups, matchup coverage, RMSD after subtraction of linear regression, percentage reduction in RMSD due to subtraction of linear regression and weighted score divided by number of matchups). S6_GlobalAlgorithmScoresX.csv S7_GreaterCaribbeanAlgorithmScoresX.csv S8_AmazonPlumeAlgorithmScoresX.csv S9_AmazonPlumeLowSAlgorithmScoresX.csv S10_BayOfBengalAlgorithmScoresX.csv Datasets S11 to S15 are zipped netCDF files containing error analyses of all outputs in each region, including the squared error of each output at each matchup, the weight of each squared error (1/squared uncertainty), weight * squared error, number of matchups available to each output, number of matchups available to each combination of two outputs, (score of each output in a given comparison of two outputs, overall output score and RMSD estimated from output score), all items in the last brackets presented both unweighted and weighted. S11_GlobalSquaredErrorsX.nc S12_GreaterCaribbeanSquaredErrorsX.nc S13_AmazonPlumeSquaredErrorsX.nc S14_AmazonPlumeLowSSquaredErrorsX.nc S15_BayOfBengalSquaredErrorsX.nc Datasets S16 to S20 are zipped netCDF files containing global maps of the mean and standard deviation of each of: in situ data; output data; output data - in situ data and number of matchups. Regional files show the same maps, but only including data within the region. S16_GlobalmapsX.nc S17_GreaterCaribbeanmapsX.nc S18_AmazonPlumemapsX.nc S19_AmazonPlumeLowSmapsX.nc S20_BayOfBengalmapsX.nc Datasets S21 and S22 are .csv files containing the effect on estimated RMSD of excluding various combinations of algorithms and/or inputs for TA and DIC in each region. For a given variable and region, the first line shows the algorithm, input data sources, estimated RMSD and bias of the output with lowest estimated RMSD. Subsequent lines show the effect of excluding combinations of algorithms and/or inputs, ordered first by the number of algorithms/inputs excluded (fewest first), then by effect on lowest estimated RMSD. So the first line(s) consist of the effects of excluding the best algorithm and each of the input sources to that algorithm, most important first. Each line consists of the item excluded, ratio of resulting estimated RMSD to original estimated RMSD, resulting bias and number of items excluded. Some exclusions are equivalent, for instance exclusion of WOA nitrate (the only nitrate source) is equivalent to excluding all algorithms using nitrate. Dataset S21 contains a comprehensive list of all possible exclusions, and so is rather hard to read and interpret. To mitigate this, Dataset S22 contains only those exclusion sets with effect greater than 1% and at least 0.1% greater than any subset of its exclusions. S21_importancesX.csv S22_importances2X.csv Dataset S23 is a .csv file containing like-for-like comparisons of RMSD between TA and DIC in each region. Bear in mind that the RMSD shown here is not the same as the estimated RMSD (RMSDe) shown elsewhere. S23_TA_DICcomparisonX.csv
    Keywords: Aquarius; Carbonate chemistry; CORA; Dissolved inorganic carbon; Earth observation; File content; File format; File name; File size; HadGEM2-ES; Ocean acidification; SMOS; Total alkalinity; Uniform resource locator/link to file
    Type: Dataset
    Format: text/tab-separated-values, 345 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-05-06
    Description: The global navigation satellite system (GNSS) Transpolar Earth Reflectometry exploriNg system (G-TERN) was proposed in response to ESA's Earth Explorer 9 revised call by a team of 33 multi-disciplinary scientists. The primary objective of the mission is to quantify at high spatio-temporal resolution crucial characteristics, processes and interactions between sea ice, and other Earth system components in order to advance the understanding and prediction of climate change and its impacts on the environment and society. The objective is articulated through three key questions. 1) In a rapidly changing Arctic regime and under the resilient Antarctic sea ice trend, how will highly dynamic forcings and couplings between the various components of the ocean, atmosphere, and cryosphere modify or influence the processes governing the characteristics of the sea ice cover (ice production, growth, deformation, and melt)? 2) What are the impacts of extreme events and feedback mechanisms on sea ice evolution? 3) What are the effects of the cryosphere behaviors, either rapidly changing or resiliently stable, on the global oceanic and atmospheric circulation and mid-latitude extreme events? To contribute answering these questions, G-TERN will measure key parameters of the sea ice, the oceans, and the atmosphere with frequent and dense coverage over polar areas, becoming a “dynamic mapper”of the ice conditions, the ice production, and the loss in multiple time and space scales, and surrounding environment. Over polar areas, the G-TERN will measure sea ice surface elevation (〈;10 cm precision), roughness, and polarimetry aspects at 30-km resolution and 3-days full coverage. G-TERN will implement the interferometric GNSS reflectometry concept, from a single satellite in near-polar orbit with capability for 12 simultaneous observations. Unlike currently orbiting GNSS reflectometry missions, the G-TERN uses the full GNSS available bandwidth to improve its ranging measurements. The lifetime would be 2025-2030 or optimally 2025-2035, covering key stages of the transition toward a nearly ice-free Arctic Ocean in summer. This paper describes the mission objectives, it reviews its measurement techniques, summarizes the suggested implementation, and finally, it estimates the expected performance.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-01-06
    Description: Shelf seas play an important role in the global carbon cycle, absorbing atmospheric carbon dioxide (CO2) and exporting carbon (C) to the open ocean and sediments. The magnitude of these processes is poorly constrained, because observations are typically interpolated over multiple years. Here, we used 298500 observations of CO2 fugacity (fCO2) from a single year (2015), to estimate the net influx of atmospheric CO2 as 26.2 ± 4.7 Tg C yr−1 over the open NW European shelf. CO2 influx from the atmosphere was dominated by influx during winter as a consequence of high winds, despite a smaller, thermallydriven, air-sea fCO 2 gradient compared to the larger, biologically-driven summer gradient. In order to understand this climate regulation service, we constructed a carbon-budget supplemented by data from the literature, where the NW European shelf is treated as a box with carbon entering and leaving the box. This budget showed that net C-burial was a small sink of 1.3 ± 3.1 Tg C yr−1, while CO2 efflux from estuaries to the atmosphere, removed the majority of river C-inputs. In contrast, the input from the Baltic Sea likely contributes to net export via the continental shelf pump and advection (34.4 ± 6.0 Tg C yr−1).
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in [citation], doi:[doi]. Morrow, R., Fu, L., Ardhuin, F., Benkiran, M., Chapron, B., Cosme, E., d'Ovidio, F., Farrar, J. T., Gille, S. T., Lapeyre, G., Le Traon, P., Pascual, A., Ponte, A., Qiu, B., Rascle, N., Ubelmann, C., Wang, J., & Zaron, E. D. Global observations of fine-scale ocean surface topography with the surface water and ocean topography (SWOT) mission. Frontiers in Marine Science, 6(232),(2019), doi:10.3389/fmars.2019.00232.
    Description: The future international Surface Water and Ocean Topography (SWOT) Mission, planned for launch in 2021, will make high-resolution 2D observations of sea-surface height using SAR radar interferometric techniques. SWOT will map the global and coastal oceans up to 77.6∘ latitude every 21 days over a swath of 120 km (20 km nadir gap). Today’s 2D mapped altimeter data can resolve ocean scales of 150 km wavelength whereas the SWOT measurement will extend our 2D observations down to 15–30 km, depending on sea state. SWOT will offer new opportunities to observe the oceanic dynamic processes at scales that are important in the generation and dissipation of kinetic energy in the ocean, and that facilitate the exchange of energy between the ocean interior and the upper layer. The active vertical exchanges linked to these scales have impacts on the local and global budgets of heat and carbon, and on nutrients for biogeochemical cycles. This review paper highlights the issues being addressed by the SWOT science community to understand SWOT’s very precise sea surface height (SSH)/surface pressure observations, and it explores how SWOT data will be combined with other satellite and in situ data and models to better understand the upper ocean 4D circulation (x, y, z, t) over the next decade. SWOT will provide unprecedented 2D ocean SSH observations down to 15–30 km in wavelength, which encompasses the scales of “balanced” geostrophic eddy motions, high-frequency internal tides and internal waves. This presents both a challenge in reconstructing the 4D upper ocean circulation, or in the assimilation of SSH in models, but also an opportunity to have global observations of the 2D structure of these phenomena, and to learn more about their interactions. At these small scales, ocean dynamics evolve rapidly, and combining SWOT 2D SSH data with other satellite or in situ data with different space-time coverage is also a challenge. SWOT’s new technology will be a forerunner for the future altimetric observing system, and so advancing on these issues today will pave the way for our future.
    Description: The authors were mostly funded through the NASA Physical Oceanography Program and the CNES/TOSCA programs for the SWOT and OSTST Science teams. AnP acknowledges support from the Spanish Research Agency and the European Regional Development Fund (Award No. CTM2016-78607-P). AuP acknowledges support from the ANR EQUINOx (ANR-17-CE01-0006-01).
    Keywords: Ocean mesoscale circulation ; Satellite altimetry ; SAR-interferometry ; Tides and internal tides ; Calibration-validation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Boas, A. B. V., Ardhuin, F., Ayet, A., Bourassa, M. A., Brandt, P., Chapron, B., Cornuelle, B. D., Farrar, J. T., Fewings, M. R., Fox-Kemper, B., Gille, S. T., Gommenginger, C., Heimbach, P., Hell, M. C., Li, Q., Mazloff, M. R., Merrifield, S. T., Mouche, A., Rio, M. H., Rodriguez, E., Shutler, J. D., Subramanian, A. C., Terrill, E. J., Tsamados, M., Ubelmann, C., & van Sebille, E. Integrated observations of global surface winds, currents, and waves: Requirements and challenges for the next decade. Frontiers in Marine Science, 6, (2019): 425, doi:10.3389/fmars.2019.00425.
    Description: Ocean surface winds, currents, and waves play a crucial role in exchanges of momentum, energy, heat, freshwater, gases, and other tracers between the ocean, atmosphere, and ice. Despite surface waves being strongly coupled to the upper ocean circulation and the overlying atmosphere, efforts to improve ocean, atmospheric, and wave observations and models have evolved somewhat independently. From an observational point of view, community efforts to bridge this gap have led to proposals for satellite Doppler oceanography mission concepts, which could provide unprecedented measurements of absolute surface velocity and directional wave spectrum at global scales. This paper reviews the present state of observations of surface winds, currents, and waves, and it outlines observational gaps that limit our current understanding of coupled processes that happen at the air-sea-ice interface. A significant challenge for the coming decade of wind, current, and wave observations will come in combining and interpreting measurements from (a) wave-buoys and high-frequency radars in coastal regions, (b) surface drifters and wave-enabled drifters in the open-ocean, marginal ice zones, and wave-current interaction “hot-spots,” and (c) simultaneous measurements of absolute surface currents, ocean surface wind vector, and directional wave spectrum from Doppler satellite sensors.
    Description: AV was funded by NASA Earth and Space Science Fellowship award number 80NSSC17K0326. MB was funded by NOAA (FundRef number 100007298) through the NGI (grant number 18-NGI3-42). SG was funded by NASA grants NNX16AH67G, NNX14A078G, NNX17AH53G, and 80NSSC19K0059. MT acknowledges support from the Natural Environment Research Council (grant number NE/R000654/1). MT, MR, JS, and EvS were partially funded by the SKIM Mission Science Study (SKIM-SciSoc) project ESA RFP 3-15456/18/NL/CT/gp. AA was supported by DGA grant No D0456JE075 and the French Brittany Regional Council. MF was supported by NASA Ocean Vector Winds Science Team Grant 80NSSC18K1611 and Jet Propulsion Laboratory/CalTech subcontract 1531731. FA, BC, and AM were supported by ESA under the Sea State CCI project, with additional support from CNES and ANR grants for ISblue (ANR-17-EURE-0015) and LabexMER (ANR-10-LABX-19). MZ was funded by NASA (grant number NNX16AH67G).
    Keywords: Air-sea interactions ; Doppler oceanography from space ; Surface waves ; Absolute surface velocity ; Ocean surface winds
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-11-10
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in [citation], doi:[doi]. Gommenginger, C., Chapron, B., Hogg, A., Buckingham, C., Fox-Kemper, B., Eriksson, L., Soulat, F., Ubelmann, C., Ocampo-Torres, F., Nardelli, B. B., Griffin, D., Lopez-Dekker, P., Knudsen, P., Andersen, O., Stenseng, L., Stapleton, N., Perrie, W., Violante-Carvalho, N., Schulz-Stellenfleth, J., Woolf, D., Isern-Fontanet, J., Ardhuin, F., Klein, P., Mouche, A., Pascual, A., Capet, X., Hauser, D., Stoffelen, A., Morrow, R., Aouf, L., Breivik, O., Fu, L., Johannessen, J. A., Aksenov, Y., Bricheno, L., Hirschi, J., Martin, A. C. H., Martin, A. P., Nurser, G., Polton, J., Wolf, J., Johnsens, H., Soloviev, A., Jacobs, G. A., Collard, F., Groom, S., Kudryavtsev, V., Wilkin, J., Navarro, V., Babanin, A., Martin, M., Siddorn, J., Saulter, A., Rippeth, T., Emery, B., Maximenko, N., Romeiser, R., Graber, H., Azcarate, A. A., Hughes, C. W., Vandemark, D., da Silva, J., Van Leeuwen, P. J., Naveira-Garabato, A., Gemmrich, J., Mahadevan, A., Marquez, J., Munro, Y., Doody, S., & Burbidge, G. SEASTAR: A mission to study ocean submesoscale dynamics and small-scale atmosphere-ocean processes in coastal, shelf and polar seas. Frontiers in Marine Science, 6, (2019):457, doi:10.3389/fmars.2019.00457.
    Description: High-resolution satellite images of ocean color and sea surface temperature reveal an abundance of ocean fronts, vortices and filaments at scales below 10 km but measurements of ocean surface dynamics at these scales are rare. There is increasing recognition of the role played by small scale ocean processes in ocean-atmosphere coupling, upper-ocean mixing and ocean vertical transports, with advanced numerical models and in situ observations highlighting fundamental changes in dynamics when scales reach 1 km. Numerous scientific publications highlight the global impact of small oceanic scales on marine ecosystems, operational forecasts and long-term climate projections through strong ageostrophic circulations, large vertical ocean velocities and mixed layer re-stratification. Small-scale processes particularly dominate in coastal, shelf and polar seas where they mediate important exchanges between land, ocean, atmosphere and the cryosphere, e.g., freshwater, pollutants. As numerical models continue to evolve toward finer spatial resolution and increasingly complex coupled atmosphere-wave-ice-ocean systems, modern observing capability lags behind, unable to deliver the high-resolution synoptic measurements of total currents, wind vectors and waves needed to advance understanding, develop better parameterizations and improve model validations, forecasts and projections. SEASTAR is a satellite mission concept that proposes to directly address this critical observational gap with synoptic two-dimensional imaging of total ocean surface current vectors and wind vectors at 1 km resolution and coincident directional wave spectra. Based on major recent advances in squinted along-track Synthetic Aperture Radar interferometry, SEASTAR is an innovative, mature concept with unique demonstrated capabilities, seeking to proceed toward spaceborne implementation within Europe and beyond.
    Description: CG and AM received funding from the United Kingdom Centre for Earth Observation Instrumentation SEASTAR+ project (Contract No. RP10G0435A02). PVL was supported by the European Research Council (ERC) CUNDA project 694509 under the European Union Horizon 2020 Research and Innovation Program.
    Keywords: Satellite ; Air sea interactions ; Upper ocean dynamics ; Submesoscale ; Coastal ; Marginal ice zone ; Radar ; Along-track interferometry
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-02-08
    Description: We propose a satellite mission that uses a near-nadir Ka-band Doppler radar to measure surface currents, ice drift and ocean waves at spatial scales of 40 km and more, with snapshots at least every day for latitudes 75 to 82°, and every few days for other latitudes. The use of incidence angles of 6 and 12° allows for measurement of the directional wave spectrum, which yields accurate corrections of the wave-induced bias in the current measurements. The instrument's design, an algorithm for current vector retrieval and the expected mission performance are presented here. The instrument proposed can reveal features of tropical ocean and marginal ice zone (MIZ) dynamics that are inaccessible to other measurement systems, and providing global monitoring of the ocean mesoscale that surpasses the capability of today's nadir altimeters. Measuring ocean wave properties has many applications, including examining wave–current interactions, air–sea fluxes, the transport and convergence of marine plastic debris and assessment of marine and coastal hazards.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-01-31
    Description: Shelf seas play an important role in the global carbon cycle, absorbing atmospheric carbon dioxide (CO2) and exporting carbon (C) to the open ocean and sediments. The magnitude of these processes is poorly constrained, because observations are typically interpolated over multiple years. Here, we used 298500 observations of CO2 fugacity (fCO2) from a single year (2015), to estimate the net influx of atmospheric CO2 as 26.2 ± 4.7 Tg C yr−1 over the open NW European shelf. CO2 influx from the atmosphere was dominated by influx during winter as a consequence of high winds, despite a smaller, thermally-driven, air-sea fCO2 gradient compared to the larger, biologically-driven summer gradient. In order to understand this climate regulation service, we constructed a carbon-budget supplemented by data from the literature, where the NW European shelf is treated as a box with carbon entering and leaving the box. This budget showed that net C-burial was a small sink of 1.3 ± 3.1 Tg C yr−1, while CO2 efflux from estuaries to the atmosphere, removed the majority of river C-inputs. In contrast, the input from the Baltic Sea likely contributes to net export via the continental shelf pump and advection (34.4 ± 6.0 Tg C yr−1).
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...