GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Language
  • 1
    Publication Date: 2024-02-15
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Ice wedge polygons on steep slopes have generally been described as being covered by periglacial sediments and, typically, the active layer on slopes becomes mobile during thaw periods, which can lead to solifluction. In West Greenland close to the ice margin, however, the active layer and ice wedge polygons are stable despite their occurrence on steep slopes with inclinations of ≥30°. We conducted a soil survey (including sampling for soil analyses and radiocarbon dating) in the Umimmalissuaq valley and installed a field station ~4 km east of the current ice margin to monitor soil temperature and water tension at depths of 10, 20 and 35 cm of the active layer on a steep, north‐facing slope in the middle of an ice wedge polygon from 2009 to 2015. Thawing and freezing periods lasted between 2 and 3 months and the active layer was usually completely frozen from November to April. We observed simultaneous and complete water saturation at all three depths of the active layer in one summer for 1 day. The amount of water in the active layer apparently was not enough to trigger solifluction during the summer thaw, even at slope inclinations above 30°. In addition, the dense shrub tundra absorbs most of the water during periods between thawing and freezing, which further stabilizes the slope. This process, together with the dry and continental climate caused by katabatic winds combined with no or limited frost heave, plays a crucial role in determining the stability of these slopes and can explain the presence of large‐scale stable ice wedge polygon networks in organic matter‐rich permafrost, which is about 5,000 years old. This study underlines the importance of soil hydrodynamics and local climate regime for landscape stability and differing intensities of solifluction processes in areas with strong geomorphological gradients and rising air temperatures.〈/p〉
    Keywords: ddc:551.3 ; permafrost ; soil temperature ; soil water tension ; solifluction
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of organic chemistry 50 (1985), S. 3522-3526 
    ISSN: 1520-6904
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Munksgaard International Publishers
    Clinical oral implants research 13 (2002), S. 0 
    ISSN: 1600-0501
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: As part of a long-term evaluation of endosteal dental implants in primates, this paper describes the histological response to plate-form and root-form implants. Thirty-six primates received 48 mandibular distal abutment implants. After healing, the implants were restored with fixed partial dentures, which remained in function for two years. A subset of the group was ligated at the gingival sulcus to biologically stress tissues supporting the implants. Crestal bone height around implants was quantified using digital subtraction radiographic techniques. The ligated implants lost more crestal bone than non-ligated implants, as shown by ANOVA (P 〈 0.05). After retrieval, implants were embedded and sectioned for histomorphometric analysis including measurement of per cent osseointegration. Both plate-form and root-form non-ligated implants demonstrated about 60% osseointegration. When ligated, plate-form implants dropped to an average integration of only 34%, while root-form implants maintained 62% integration, a significant difference. These data show that in this primate model, plate-form and root-form implants maintained integration while in function for two years. When stressed with ligation, root-form implants maintained relative amounts of osseointegration, while per cent osseointegration of plate-form implants decreased.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Journal of molecular medicine 5 (1926), S. 1502-1507 
    ISSN: 1432-1440
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Chemie Ingenieur Technik - CIT 64 (1992), S. 1106-1109 
    ISSN: 0009-286X
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 0009-286X
    Keywords: Chemistry ; Industrial Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-09-23
    Description: Understanding and responding to the rapidly occurring environmental changes in the Arctic over the past few decades require new approaches in science. This includes improved collaborations within the scientific community but also enhanced dialogue between scientists and societal stakeholders, especially with Arctic communities. As a contribution to the Third International Conference on Arctic Research Planning (ICARPIII), the Arctic in Rapid Transition (ART) network held an international workshop in France, in October 2014, in order to discuss high-priority requirements for future Arctic marine and coastal research from an early-career scientists (ECS) perspective. The discussion encompassed a variety of research fields, including topics of oceanographic conditions, sea-ice monitoring, marine biodiversity, land-ocean interactions, and geological reconstructions, as well as law and governance issues. Participants of the workshop strongly agreed on the need to enhance interdisciplinarity in order to collect comprehensive knowledge about the modern and past Arctic Ocean's geo-ecological dynamics. Such knowledge enables improved predictions of Arctic developments and provides the basis for elaborate decision-making on future actions under plausible environmental and climate scenarios in the high northern latitudes. Priority research sheets resulting from the workshop's discussions were distributed during the ICARPIII meetings in April 2015 in Japan, and are publicly available online.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-04-27
    Description: Impacts of incentives to reduce emissions from deforestation on global species extinctions Nature Climate Change 2, 350 05022012 doi: 10.1038/nclimate1375 Bernardo B. N. Strassburg Ana S. L. Rodrigues Mykola Gusti Andrew Balmford Steffen Fritz Michael Obersteiner R. Kerry Turner Thomas M. Brooks Reducing Emissions from Deforestation and forest Degradation (REDD) has been widely discussed as a way of mitigating climate change while concurrently benefitting biodiversity. This study combines a global land-use model and spatial data on species distributions to quantify the potential impacts of REDD in avoiding global species extinctions.
    Print ISSN: 1758-678X
    Electronic ISSN: 1758-6798
    Topics: Geosciences
    Published by Springer Nature
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-06-26
    Description: Arctic permafrost coasts, especially when they are unconsolidated and ground ice rich, are extremely vulnerable to climate change. Rising temperatures of air and seawater, lengthening of the open-water season and increase in storm events are likely to prompt higher rates of coastal erosion and consequently increase the rate of land loss and material transport to the near-shore zone. Many studies have addressed this issue by compiling rates of shoreline erosion over the past fifty to sixty years to find trends, yet few investigations have attempted to look at it in three dimensions and at annual time scales, although erosion of Arctic coasts is known to be very complex and nonlinear. This study focuses on high resolution short-term (one year) erosion rates and geomorphic change. It is based on DEMs that were obtained from LIDAR surveys of the Yukon Coast and Herschel Island during the AIRMETH campaigns in 2012 and 2013. The DEMs were processed to obtain a horizontal resolution of 1 meter and serve as an elevation source from which the comparison was made. The elevations from the 2012 DEM were then deducted from elevations in 2013 to obtain erosion and accumulation values for each pixel. Preliminary results show that coastal retreat encompasses a range of processes acting at different temporal and spatial scales. They can be divided into denudation and abrasion processes. Denudation is the various types of mass wasting, such as translational slides, active layer detachments or retrogressive thaw slumps. The material delivered from these abrupt events is made available for abrasion, which is transferring the material to the shoreface at longer time scales. The accumulated material temporarily protects cliffs from incident wave energy and abrasion is reactivated when the material is removed. The erosion from gullies and thermo-erosional valleys is another form of material delivery to coast. Shoreline retreats from 2 to 5 meters were recorded on the most exposed parts of the coast, while vertical changes of cliffs account locally for more than 10 meters and extend up to 20 meters laterally. Locations where these high numbers are observed are often characterised by the adjacent accumulation of material on the beach. This study shows that the pathways for the transfer of material from the coast to the sea are very diverse and are often limited by the ability of abrasion to remove material delivered by the mass wasting of coastal bluffs.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-06-30
    Description: Arctic permafrost coasts make up ~34% of the world’s coastline (ca. 400,000 km) and are often made of ice-rich unconsolidated sediments. This makes them highly susceptible to coastal erosion, and it is likely that large quantities of carbon are released, because permafrost soils are considered to hold approximately 50% of the global soil organic carbon pool. Current estimates of the carbon released by coastal erosion focus solely on particulate organic carbon (POC). Dissolved organic carbon (DOC) is generally not included in these calculations, because estimations of DOC contents in ground ice, which is overwhelmingly present along Arctic coasts, do not exist. In some cases, ground ice occupies as much as 90% of coastal bluffs with 40 m in height, where the coastline erodes at rates approaching 20 m/yr at its maximum. Here, we report DOC contents within permafrost from different ground ice types throughout the Arctic (Canada, Alaska, Siberia). We put them into context of Arctic organic carbon pools and fluxes, and evaluate their contribution to the Arctic carbon budget against the background of increasing permafrost degradation and enhancing coastal erosion in the future. For example, DOC concentrations in massive ground ice bodies including ice wedges range between 〈1.0 and 28.6 mg/L, while ice wedges have the greatest potential as DOC pool due to their wide spatial distribution in late Pleistocene and Holocene polygonal ground. Siberian Ice Complex deposits (Yedoma) are thought to consist of up to 50% of ice wedges by volume and are therefore a substantial pool of DOC. Intrasedimental ice (non-massive) like ice lenses and pore ice are another important part of unconsolidated permafrost deposits. DOC concentrations within intrasedimental ice differ in orders of magnitude compared to massive ice and rise up to 1200 mg/L. Although these numbers might be still small compared to the POC stocks in peat and mineral soils, DOC is chemically labile and may directly enter local food webs of the near-shore zone. Moreover, due to its lability, DOC is quickly mineralized and returned to the atmosphere when released due to permafrost degradation. Robust estimations of how much organic carbon is potentially released from permafrost are crucial for predicting the strength and timing of carbon-cycle feedback mechanisms in the Arctic. This approach shall lead to an improved understanding of how important permafrost thaw in general and the erosion of permafrost coasts in particular are for the climate development this century and beyond. This is especially important in the Arctic before the background of expected rising air and sea surface temperatures, prolongation of the open-water season, increasing storm frequency and accelerating eustatic sea level rise.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...